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ABSTRACT 
 
Unsupervised spectral unmixing is one of the most important processing tasks performed 
on hyperspectral imaging data. It is a blind source separation problem where every 
spectral pixel in the hyperspectral data cube is separated into a set of pure spectra, i.e., 
endmembers, without any prior knowledge about them. This problem could be solved 
sparsely using the basis pursuit optimization problem which is a well-known technique 
used for sparse source recovery. The basis pursuit considers the endmembers sparse in 
a basis known as dictionary. The contribution of this paper is the fast implementation of 
the basis pursuit unmixing algorithm due to using the Coiflet orthogonal dictionary. Using 
Coiflet orthogonal dictionary results in sparser spectral pixels which lead to fast 
computation by reducing the iterations of the basis pursuit unmixing algorithm. The basis 
pursuit unmixing algorithm using Coiflet was applied to a synthetic data cube acquired 
from few materials selected from the given ASTER spectral library. 
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1. Introduction  
 
Hyperspectral imaging (HSI) systems acquire images using hundreds of contiguous 
wavelengths in potentially different electromagnetic bands [1]. Hyperspectral cameras 
typically have low spatial resolutions that usually provide the acquired spectral pixel as 
mixture of spectra of pure materials present in the scene called endmembers. 
Unsupervised unmixing does this task without any prior knowledge about the nature of 
the scene nor the present endmembers. 
 
Every spectral pixel in the hyperspectral data cube is separated into a set of endmembers 
[2]. We model the spectral pixels in the data cube using a linear mixture model such that: 
 

𝒀 = 𝑺𝑨 + 𝑬 (1) 
 
where 𝒀 = [𝒚1, … , 𝒚𝑁] is 𝐿 × 𝑁 matrix represents the spectral pixels, 𝐿 is the number of 

wavelengths,  N is the number of spectral pixels in the data cube, 𝑺 = [𝒔1, … , 𝒔𝑀] is 𝐿 × 𝑀 

matrix represents the endmembers spectra, 𝑀 indicates the number of endmembers exist 
in the scene, 𝑨 = [𝒂1, … , 𝒂𝑁] is 𝑀 × 𝑁 matrix represents all the abundances (proportions) 

of the endmembers in every pixel such that the abundance vector 𝒂𝑖 for every pixel is 

subject to the nonnegativity and the sum-to-one constraints and 𝑬 represents an additive 
perturbation (noise). The problem of unsupervised spectral unmixing is to estimate the 

endmember matrix 𝑺 and the abundance matrix 𝑨 given the spectral pixels matrix 𝒀. This 
is considered as a Blind Source Separation (BSS) problem [3]. 
  
Sparse signal restoration algorithms assume that the unknown signal is sparse in an 
appropriate domain called dictionary.  So, signal sparsity could be used as prior 
information to obtain an estimate of the unknown signal. This problem is termed basis 
pursuit problem [4]. The basis pursuit optimization problems could be used in the 
hyperspectral unmixing problem. In [5], the basis pursuit unmixing problem is solved using 
proximal methods which in the case of l1-norm problems will tend to iterative thresholding 
[6], but they didn’t choose any specified dictionary.  
 
The choice of the appropriate dictionary is important for obtaining sparser representation 
for better unmixing results. Two main approaches of dictionaries for sparse 
representation; analytic dictionaries approach and learned custom dictionaries approach 
[7]. In the analytic dictionary approach, the dictionary is described by a transform family. 
In the learned custom dictionaries approach, the dictionary is derived from the given 
measurements. 
 
Due to the physical nature of the spectral pixels which have a small number of peaks 
corresponding to resonant absorption properties, the wavelet is chosen as an analytic 
dictionary for the sparsity representation of the spectral pixels. Studying the properties of 
the Coiflet gives us the motivation of using it as an analytic dictionary for promoting the 
sparsity of the unknown endmembers in solving the basis pursuit unmixing problem. 



Proceedings of the 11th ICEENG Conference, 3-5 April, 2018 39-CST 
 

3 
 

  
This paper is arranged as follows; Section 2 illustrates the basis pursuit unmixing 
algorithm. The choice of Coiflet is discussed in section 3. Section 4 shows convergence 
of the basis pursuit unmixing algorithm using three different analytic dictionaries.  
 
 

2. Sparsity-based unmixing algorithm 
 
As a preprocessing step, we can transform the problem into a different domain using the 

dictionary 𝜱 for promoting the sparsity of 𝑺 which could be represented in 𝜱 as: 
 

𝑺 = 𝜱𝜶 (2) 

 

where 𝜶 is the coefficients of 𝑺 in 𝜱. This step is considered as a warm start to the 

optimization problem to promote the sparsity of 𝑺 . The data  𝒀 could be represented in 

the dictionary 𝜱 obtaining the matrix 𝜷 = 𝜱𝑻𝒀, the matrix where each of its columns 

stores the coefficients of each transformed pixel  𝒚𝑖 . The unmixing problem could be 
formulated as constraint minimization problem by adding the sparsity penalty term:  
 

arg min𝜶,𝑨
1

2
‖𝜷 − 𝜶𝑨‖2

2 + λ‖𝜶‖1 (3) 

 

where λ is a regularization parameter that quantifies the tradeoff between the two terms 
of the equation.  
 

Indeed, as 𝑁 ≫  𝑀, it turns out that (3) is a multichannel overdetermined linear system. 
The solution is obtained by an iterative and alternate estimation of 𝜶 and 𝑨 [6]: 

 
 Update the coefficients: solving min

𝜶
|𝑨  when  𝑨  is fixed, this is the basis pursuit 

problem. 𝜶 is obtained  using the proximal method which is ‘hard thresholding’ in this 
case [8]: 
 

𝜶 = Thresh𝛿(𝑨†𝜷) (4) 

 

where 𝑨†is the pseudo-inverse of the current estimate of 𝑨, Thresh𝛿  is a thresholding 
operator and the threshold 𝛿 decreases with increasing iteration count. 
 

 Update the mixing matrix: solving min
𝑨

|𝜶 when 𝜶 is fixed. 𝑨 is obtained  using the least-

squares method with the constraints of the abundance matrix in the linear mixture 
model: 

 

𝑨 = (𝜶𝑇𝜶)−𝟏𝜶𝑇𝜷 (5) 
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The two stages iterative process leads to the solution of (3). After convergence and 

obtaining the coefficient matrix  𝜶  and the abundance matrix  𝑨 , the spectra of the 
endmembers 𝑺 could be restored using the same dictionary 𝜱 using 𝑺 = 𝜱𝜶. 
 

3. Coiflet dictionary for spectral unmixing 
 
The wavelet transform is an excellent basis to sparsely represent 1-D smooth signals 
having a small number of irregular points. The wavelet family was chosen as our potential 
analytic dictionary because spectral pixels are smooth signals and the physical nature of 
it indicates that these spectral pixels have a small number of peaks corresponding to 
resonant absorption peaks. 
 

The vanishing moments of a wavelet function 𝜓 which is an important property of wavelet: 
 

∫ 𝑥𝑙 𝜓(𝑥) 𝑑𝑥 = 0           𝑓𝑜𝑟 0 ≤ 𝑙 ≤ 𝑚 
 
(6) 

 

 A wavelet function has 𝑚  vanishing moments can be represented as the 𝑚𝑡ℎ  order 
derivative of a given function 𝜃. Thus the resulting wavelet transform is equivalent to a 
multiscale differential operator and it kills its peaks [9].  
 

𝜓(𝑡) = (−1)𝑚
𝑑𝑚𝜃(𝑡)

𝑑𝑡𝑚
 

 
(7) 

 
So, wavelet with a large number of vanishing moments gives sparser representation for 
most signals. However, there is a trade-off between the number of vanishing moments of 

𝜓 and the support in the time domain of 𝜓 [9]. The support of a wavelet in the time domain 
and its number of vanishing moments are independent. But, for an orthogonal discrete 

wavelet 𝜓, if it has 𝑚 vanishing moments, then its support in the time domain will be 2𝑚 −
1. The Daubechies wavelet have minimum support in the time domain for a given number 
of vanishing moments; that’s why it’s considered optimal. 
 
Coiflet was developed by I. Daubechies at the request of R. Coifman. In addition to its 

wavelet function 𝜓 with order 𝑛 that has 2𝑛 vanishing moments, their scaling function 𝜑, 
also has 2𝑛 − 1 vanishing moments. Both wavelet function, 𝜓, and scaling function, 𝜑, 
have the minimum possible support in the discrete time domain of 6𝑛 − 1. Therefore, 
among all wavelet families with a given support in the discrete time domain, Coiflet would 

has the largest number of vanishing moments for both 𝜓  and  𝜑 . This makes the 
representation of a regular function with a small number of singularities or peaks as the 
spectral pixels using Coiflet dictionary atoms more sparse than any other wavelet 
dictionary.  
 
The computational cost of implementing the basis pursuit unmixing algorithm using an 
orthogonal dictionary will reduce to be [6]: 
 

𝑂(𝑁𝑖𝑡𝑒𝑟𝑀2𝐿) + 𝑂(𝑁𝐿) + 𝑂(𝑀𝐿) (8) 
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where 𝑁𝑖𝑡𝑒𝑟 is the algorithm number of iterations. Using Coiflet as an orthogonal dictionary 
will give rise to an initial point of the iterations that is close to the optimal sparse solution 
for the endmembers which means reducing the number of iterations, so the computational 
cost given in (15) will be more reduced. 
 

4. Results 

This section presents a comparison of using three different analytic dictionaries in solving 
the basis pursuit unmixing algorithm that was discussed in section 2. The three 
dictionaries are the Coiflet dictionary, the Daubechies dictionary and the Discrete Cosine 
Transform (DCT) dictionary [10].  
 
We used in our implementation a synthetic cube made from few selected materials from 
ASTER spectral library [11].  A mixed cube of 3000 spectral pixels was synthesized from 
known three materials spectra; grass, concrete and asphalt; picked up from the ASTER 

spectral library [11]. The cube was established using random abundance matrix 𝑨 subject 
to the constraints of the linear mixture model. Additive gaussian noise was added to the 

synthetic cube spectra with  SNR = 30 db . Here in this case, the number of 
endmembers  𝑀 = 3 , the number of spectral pixels  𝑁 = 3000  and the number of 
wavelengths 𝐿 = 491. 
 
The convergence of the basis pursuit unmixing algorithm is investigated to assure that 
using Coiflet dictionary will result in faster convergence. This convergence is obtained by 
calculating the correlation coefficient between the exact endmember spectrum and the 
estimated one versus the number of iterations for each endmember. As the correlation 
coefficient increases to 1, the optimum solution is got faster. 
 
The basis pursuit unmixing problem will converge faster when using the Coiflet dictionary 
as it needs less than 50 iterations to reach around 0.95 correlation values which are too 
close to the optimum value ‘1’ compared to that of using the other dictionaries as shown 
in Fig. 1. Decreasing the number of iteration will lead to reducing the computation 
complexity as shown in equation (8) meaning that the algorithm becomes faster.  
 
 

5. Conclusion 

Coiflet dictionary was chosen as an optimal analytic dictionary for sparse representation 
of the hyperspectral spectral pixels due to its largest number of vanishing moments. Using 
Coiflet dictionary causes faster and simpler computation of solving the basis pursuit 
unmixing problem. 
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Fig.1. The correlation coefficient between the exact and estimated endmembers using 

three different dictionaries: (a) for the grass endmember, (b) for the Concrete 
endmember and (c) for the Asphalt endmember. 


