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Abstract 
 

The communications under the shallow water are affected by the impulsive components of the ambient 

noise, in which its statistics does not follow the normal Gaussian distribution. Since most of the 

communication receivers are designed to receive the Gaussian noise signals, its Performance degrade in the 

presence of non-Gaussian noise. The noise with Gaussian Mixture (GM) distribution can be considered as 

one of the most popular non-Gaussian noise that is used to model the UWA, due to its universal 

approximation properties. However, there were a little researches investigate and present an analytical 

analysis of the spread spectrum error probability in the UWA with the GM noise. In this paper, the 

traditional Chaotic Sequence Code (CSC) is applied and verified as a spreading code for UWA channel 

with GM noise. The error performance is presented and derived analytically with and without the spreading 

process. The results show that applying the CSC significantly improves the performance in the UWA with 

the GM noise. 
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I- INTRODUCTION 
 

Although PN code has attractive properties, however it has also many drawbacks such as the limitation of 

the number of such sequences, in addition to its periodicity feature, which make the intercepted signal is 

predictable and is reconstructed by linear regression which leads to security limitations. One of the 

alternative solutions is the chaotic code, which has a lot of attractive properties over the conventional PN 

sequences, especially from the security point of view. It is non-periodic, wide band, and more difficult to  
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predict and to reconstruct. Moreover, Chaos is a deterministic, random-like process found in non-linear 

dynamical system, which is non-converging and bounded [1]. It has also a very sensitive dependence upon 

its initial condition and parameters that gives the availability to generate an infinite number of spreading 

codes [2]. These properties make chaotic codes more difficult to intercept, and more secured to decode the 

information spreaded upon them [3].  

The central limit theorem (CLT) assumes that the sum of 𝐊 independent and identically distributed (i.i.d.) 

random variables with finite variance converges to a Gaussian distribution as 𝐊 → ∞ [4]. According to this 

assumption, The Performance of a communication system depends on the statistical characteristics of 

channel noise which is mostly assumed to be Gaussian in nature. In the case of the underwater acoustic 

(UWA) communication channel, there are also several sources of random noise, such as: merchant ships, 

underwater explosives, biological sources, waves, thermal noise, and surface agitation [5]-[7]. These 

sources of noises can be represented accumulatively by the Gaussian distribution. Nevertheless, in the 

UWA channel, it is found that for a given frequency band of operation, there are a specific noise sources or 

even one dominant source has a dominant effect for overall cumulative noise [8]. In this case, the CLT 

can’t be assumed and applied, and consequently the channel can’t be approximated to the traditional 

Gaussian distribution. 

Alternatively, there was many several non-Gaussian models proposed in many literatures [9] – [14]. The 

Middleton model can be considered the first model proposed to simulate the non-Gaussian UWA channel; 

however its main drawback is that its density function is represented by an infinite series of weighted 

Gaussian PDF's [10]. The Generalized Gaussian (GG) model is another model represented in [9] and [11], 

which describes and approximates a wide range of super-Gaussian to sub-Gaussian densities. The main 

limitation of the GG model is that its density function does not have a closed form except for special cases, 

and thus the density function is approximated by the Cauchy-Gaussian mixture model [13], or Gaussian 

Mixture model [14]. 

Regarding to the Gaussian Mixture (GG) model, it can be defined as a parametric Probability density 

function which represented as a weighted sum of Gaussian component densities [15]. Due to its universal 

properties, the GG distribution becomes very popular in modeling the UWA channel noise. It is found that 

there are several UWA applications such as cooperative OFDM system [16], 3-D localization of UWA 

sources [17], and ROV navigation [18] apply the GM statistics as a channel noise model. 

The new contribution of this paper is to represent an analytical analysis of the error probability for UWA 

channel represented by the GM noise considering a DSSS system. The CSC is considered as a spreading 

code in the DSSS system with different lengths. The paper presents also the performance comparison and 

the performance evaluation of the proposed system, showing the improvement of applying the CSC in the 

UWA-GM channel. The results show that the analytical results are completely coincident with the 

simulation results, which gives an indication that both the analytical and simulation results are completely 

correct. 

 

II- ANALYTICAL ANALYSIS 
 

In this section, the analytical analysis is presented and the closed form of the probability of error for both 

the BPSK, and the DS-BPSK is obtained in presence of the GM noise.  

A. GM General Background 

The Gaussian Mixture Model (GMM) can be defined as a parametric probability density function 

represented by a weighted sum of Gaussian component densities. GMMs are commonly used as a 

parametric model of the probability distribution of continuous measurements or features in a biometric 

system, such as UWA noise, and vocal-tract related spectral features in a speaker recognition system [15]. 
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The Gaussian mixture model is a weighted sum of 𝐊 component Gaussian densities which can be 

represented in a general form as shown in (1): 

𝑝(𝑋 𝜆) =∑𝜖𝑖𝑔(𝑋 𝜇𝑖, 𝜎𝑖)⁄

𝐾

𝑖=1

⁄  (1) 

Where𝐗 is a D-dimensional continuous-valued data vector (i.e. measurement or features), 𝛜𝐢, 𝐢 =
 𝟏, . . . , 𝐌, are the mixture weights (or mixture coefficients), and 𝐠(𝐗 𝛍𝐢, 𝛔𝐢)⁄ , 𝐢 =  𝟏, . . . , 𝐌, are the 

component Gaussian densities. Each component density is a D-variate Gaussian function takes the form of: 

𝑔(𝑋 𝜇𝑖, 𝜎𝑖) =
1

(2𝜋)
𝐷

2 |𝜎𝑖|
1

2

𝑒𝑥𝑝 {−
1

2
(𝑋 − 𝜇𝑖)

′𝜎𝑖
−1(𝑋 − 𝜇𝑖)}⁄  (2) 

With mean vector 𝛍𝐢 and covariance matrix𝛔𝐢. The mixture weights satisfy the constraint that∑ 𝛜𝐢
𝐊
𝐢=𝟏 = 𝟏, 

and 𝟎 ≤ 𝛜𝐢 ≤ 𝟏. For a stochastic noise process 𝐍 with 𝐊 -component GM statistics, the pdf can be given by 

𝑓𝐺𝑀(𝑛) =∑𝜖𝑖𝑁(

𝐾

𝑖=1

𝜇𝑖, 𝜎𝑖) =∑
𝜖𝑖

√2𝜋𝜎𝑖
𝑒𝑥𝑝 {

−(𝑛 − 𝜇𝑖)

√2𝜎𝑖
}

2𝐾

𝑖=1

 (3) 

In which the mean 𝛍𝐆𝐌, and the variance 𝛔𝐆𝐌 of the resultant noise process can be given according to the 

following form: 

𝜇𝐺𝑀 =∑𝜖𝑖𝜇𝑖

𝐾

𝑖=1

,       𝜎𝐺𝑀 =∑𝜖𝑖𝜎𝑖
2

𝐾

𝑖=1

 (4) 

Fig. 1 presents an example of the probability density function for four different Gaussian noises, and their equivalent Gaussian Mixture. The 

Gaussian noises components presented in this example have the statistics shown in table I: 

 
TABLE I 

PARAMETERS OF THE GAUSSIAN NOISES 

 ϵ Μ Σ 

GAUSSIAN 

NOISE 1 
0.1 0 0.84 

GAUSSIAN 

NOISE 2 
0.35 2.50 3.71 

GAUSSIAN 

NOISE 3 
0.4 5.25 1.93 

GAUSSIAN 

NOISE 4 
0.15 6.50 2.45 

 

It is clear from the figure that the resultant GM noise has a distorted Gaussian pdf with equivalent 

mean 𝛍𝐆𝐌 = 𝟑. 𝟗𝟓, and equivalent standard deviation  𝛔𝐆𝐌 = 𝟐. 𝟔𝟗𝟖𝟔 calculated according to (4). It is 

shown in [16] that the GM distribution can approximate any arbitrarily shaped non-Gaussian densities 

based on the Weiner's approximation theorem, which gives its name of universal approximation. This 

attribute makes the GM noise very popular in modeling the UWA channel. 



 

Proceedings of the 11th ICEENG Conference, 3-5 April, 2018 85 -CN 
 

 

 4 

 

Figure 1 the probability density functions of four different Gaussian noises, and their equivalent Gaussian 

mixture noise. 

 

In case of existing a low-power nearly Gaussian background noise randomly spiked with high amplitude 

short duration pulses, the noise density in such cases becomes a mixture of two Gaussian components. 

These two components have densities weighted according to the impact of each component on the overall 

ambient noise. The total GM noise can be modeled in this case by the empirical 𝛜-mixture or 𝛜-

contaminated GM density function according to the following expression shown in (5): 

 

𝑓𝐺𝑀(𝑛) =
(1 − 𝜖)

√2𝜋𝜎𝑏
𝑒𝑥𝑝 {

−(𝑛 − 𝜇𝑏)

√2𝜎𝑏
} +

𝜖

√2𝜋𝜎𝑖
𝑒𝑥𝑝 {

−(𝑛 − 𝜇𝑖)

√2𝜎𝑖
} (5) 

 

Where 𝛍𝐛, 𝛔𝐛represent the mean and the standard deviation of the nearly Gaussian noise component, and 

𝛍𝐢, 𝛔𝐢 represents mean and the standard deviation of the impulsive noise where 𝛔𝐛 ≤ 𝟏 ≤ 𝛔𝐢. In this case, 

𝛜 ∈ [𝟎, 𝟏] controls the contribution from each component, and typical values of  𝛜 ranges from 0.01 to 0.3. 

Fig. (2) shows the resultant pdf of the GM noise in this case for the following parameters,  𝛍𝐛 = 𝟎, 𝛍𝐢 =
𝟐. 𝟔𝟓, 𝛔𝐛 = 𝟎. 𝟕𝟔𝟓, 𝛔𝐢 = 𝟐. 𝟑𝟓𝟐, and 𝛜 = 𝟎. 𝟐𝟓. 

 
Figure 2 pdf of the GM noise in case of 2 dominant noise components. 
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B. Error Probability Analysis 

In this subsection, a closed form for the error probability is analyzed and derived for the UWA 

communication system in both the cases of the spreading and non-spreading under GM noise. For general 

case, let 𝐱𝐢 represents the 𝐢𝐭𝐡 transmitted symbol in UWA channel in presence of GM noise; the received 

signal will be represented as:   

𝑟 = 𝑥𝑖 + 𝑛 (6) 

Where𝐧 represents the equivalent GM noise resultant from the 𝐊 Gaussian noise components, which has 

the pdf represented by (3). This received signal has a pdf of 𝐟𝐫(𝐧) = 𝐟𝐆𝐌(𝐧 − 𝐱𝐢), and thus the stochastic 

process of the received signal follows the same density function of the noise process with mean𝛍𝐫𝐣 = 𝛍𝐣 +

𝐱𝐢, and variance 𝛔𝐫𝐣
𝟐 = 𝛔𝐣

𝟐, ∀𝐣 = 𝟏…𝐊 component of the mixture noise. In the BPSK case, assume that𝐱𝟏, 

and 𝐱𝟐 represent the two possible symbols have equal transmitted probability. In the non-spreading 

case 𝐱𝟏 = √𝐄𝐛, and𝐱𝟐 = −√𝐄𝐛, while after the spreading process the signal energy is attenuated by the 

spreading gain and 𝐱𝟏 = √
𝐄𝐛

𝐍
, and𝐱𝟐 = −√

𝐄𝐛

𝐍
, where 𝐄𝐛 is the average energy per bit, and 𝐍 is the 

spreading code length. The corresponding conditional pdf then can be represented in the non-spreading 

case as: 

 

𝑃(𝑟 𝑥𝑖) =∑
𝜖𝑗

√2𝜋𝜎𝑗
𝑒𝑥𝑝 {−(

𝑟 − [𝜇𝑗 − (−1)
𝑖√𝐸𝑏

√2𝜎𝑖
)

2

}

𝐾

𝑗=1

⁄  (7) 

 

While in the spreading case, the conditional pdf will be represented as: 

𝑃(𝑟 𝑥𝑖) =∑
𝜖𝑗

√2𝜋𝜎𝑗
𝑒𝑥𝑝

{
 
 

 
 

−

(

 
𝑟 − [𝜇𝑗 − (−1)

𝑖√
𝐸𝑏

𝑁

√2𝜎𝑖
)

 

2

}
 
 

 
 𝐾

𝑗=1

⁄  (8) 

Where 𝐢 = 𝟏, 𝟐 determines which symbol is transmitted. Accordingly, the average error probability can 

be obtained, assuming equal-probable symbol transmission as: 

 

𝑃𝐺𝑀
𝐵𝑃𝑆𝐾 =

1

2
𝑃 (𝑟 <

0

𝑥1
) +

1

2
𝑃 (𝑟 >

0

𝑥2
)

=∑
𝜖𝑗

2𝜎𝑗√2𝜋
{ ∫𝑒−(𝑟+𝑥)

2/2𝜎𝑗
2

𝑑𝑟

0

−∞

+∫ 𝑒−(𝑟+𝑦)
2/2𝜎𝑗

2

𝑑𝑟

∞

0

}

𝐾

𝑗=1

 

 

(9) 
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Where = −(𝛍𝐣 +√𝐄𝐛) , 𝐲 = −(𝛍𝐣 −√𝐄𝐛) for the non-spreading case, and  𝐱 = −(𝛍𝐣 +√
𝐄𝐛

𝐍
) , 𝐲 =

−(𝛍𝐣 −√
𝐄𝐛

𝐍
) for the spreaded case. Assuming that 𝐮 = (𝐫 + 𝐱) 𝛔𝐣⁄  ,𝐯 = (𝐫 + 𝐲) 𝛔𝐣⁄ , and by making the 

appropriate changes of the variables, the closed form of the error probability in the non-spreading case can 

be obtained as: 

 

𝑃𝐺𝑀
𝐵𝑃𝑆𝐾 =∑

𝜖𝑗

2

𝐾

𝑗=1

{𝒬 (
√𝐸𝑏 + 𝜇𝑗

𝜎𝑗
) + 𝒬 (

√𝐸𝑏 − 𝜇𝑗

𝜎𝑗
)} (10) 

While for the spreading case, the closed form of the error probability can be obtained as: 

𝑃𝐺𝑀
𝐵𝑃𝑆𝐾 =∑

𝜖𝑗

2

𝐾

𝑗=1
{
 

 

𝒬

(

 
√
𝐸𝑏

𝑁
+ 𝜇𝑗

𝜎𝑗
)

 + 𝒬

(

 
√
𝐸𝑏

𝑁
− 𝜇𝑗

𝜎𝑗
)

 

}
 

 

 (11) 

 

Where𝓠(. )is the standard  𝓠 function. It is clear that, for a single component with zero mean Gaussian 

process has𝛜𝐣 = 𝟏 , and 𝛔𝟏 =
𝐍𝐨

𝟐
, the relation (11) will be reduced to the ordinary expression for the 

probability of error of the BPSK derived in [1]. 

 

III- Simulation Results 

In this section, the simulation of the UWA channel with the GM noise is presented and verified with the 

analytical results. The simulation is performed in the case of non-spreading case, and the spreading case 

with different code lengths. The spreading code considered in the simulation is a chaotic code generated 

from the logistic map represented by equation (12).    

𝑐𝑖+1 = 𝑅𝑐𝑖(1 − 𝑐𝑖) , 𝑐𝑖 ∈ (0,1) (12) 

 

Where, 𝐜𝐢+𝟏 is the new value generated from the old value𝐜𝐢, 𝐑 is the bifurcation parameter. As well 

known, the initial value 𝐜𝟎 affects on the rest of the generated values, which gives to the chaotic codes its 

main advantage of generating the huge number of the spreading sequences. The simulation is evaluated in 

presence of two different GM noises equivalent to two different sets of two Gaussian components; each set 

has the parameters shown in table II. 

 

TABLE II 

PARAMETERS OF THE GAUSSIAN COMPONENTS AND THEIR EQUIVALENT GM NOISE 

NOI

SE 

DAT

A 

 

GM Model Parameter 

𝜖1[𝜖2
= 1 − 𝜖1] 

𝜇1 𝜇2 𝜇𝐺𝑀 𝜎1 𝜎2 𝜎𝐺𝑀 

SET 

1 
0.371 0 0 0 

0.8

88 

1.9

3 

1.37

04 

SET 

2 
0.325 0 0 0 

0.8

36 

3.1

7 

1.93

33 
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Fig. 3 shows the analytical and numerical results of the BER against the SNR for the traditional BPSK 

without spreading in presence of traditional AWGN, and two different sets of GM noises. First of all, the 

figure shows that there is a great correspondence between the analytical and simulation results, which 

ensure that both the results are correct. The figure shows also that applying the GM noises degrades the 

performance by more than 2 dB for set 1 and 6.5 dB for set 2 at BER 𝟏𝟎−𝟓. 

In Fig. 4, the system performance is evaluated analytically and numerically in case of the spreading case, 

using traditional chaotic code with length 15. The figure shows that both the analytical and numerical 

results are still matched in the spreading case. The results show also that, due to the spreading gain, the 

system performance is generally enhanced by about 12 dB at BER 𝟏𝟎−𝟓; however the GM noises still 

degrades the performance relative to the AWGN case. 

Figs. 5 and 6 illustrate the performance when the code length is increased to be 31, and 63 respectively. 

The figures show that the performance improvement is increased to be about 15 dB and 18 dB at 

BER 𝟏𝟎−𝟓 respectively. The figures show also that the simulation results verify the analytical results in the 

spreading case of the mentioned code lengths. It is clear also that the GM noise generally degrades the 

performance by about 2 to 6.5 dB according to the noise parameters. 
 

 

 
Figure 3 the analytical and numerical BER for the 

non-spreading case in presence of GM noise. 

 

 
 

Figure 4the analytical and numerical BER for the 

spreading case (code length 15) in presence of GM 

noise 

 
Figure 5the analytical and numerical BER for the 

spreading case (code length 31) in presence of GM 

noise  

 

 
Figure 6the analytical and numerical BER for the 

spreading case (code length 63) in presence of GM 

noise 

0 2 4 6 8 10 12 14 16 18 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 SNR

 N
o

rm
a
li

z
e
d

 B
E

R

 Practical and Theoritical BER forBPSK 

 

 

BPSK Gaussian Noise

BPSK Gaussian Noise1

BPSK Gaussian Noise2

Theoritical BPSK BER

BPSK Gaussian Noise1

BPSK Gaussian Noise2

-12 -10 -8 -6 -4 -2 0 2 4 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 SNR

 N
o

rm
a
li

z
e
d

 B
E

R

 Practical and Theoritical BER for Chaotic BPSK  (N=15)

 

 

Chaotic BPSK Gaussian Noise

Chaotic BPSK Gaussian Noise1

Chaotic BPSK Gaussian Noise2

Theoritical BPSK Gaussian Noise

Theoritical BPSK Gaussian Noise1

Theoritical BPSK Gaussian Noise2

-16 -14 -12 -10 -8 -6 -4 -2 0 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 SNR

 N
o

rm
a
li

z
e
d

 B
E

R

 

 

Chaotic BPSK Gaussian Noise

Chaotic BPSK Gaussian Noise1

Chaotic BPSK Gaussian Noise2

Theoritical BPSK Gaussian Noise

Theoritical BPSK Gaussian Noise1

Theoritical BPSK Gaussian Noise2

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 SNR

 N
o

rm
a
li

z
e
d

 B
E

R

 Practical and Theoritical BER for Chaotic BPSK  (N=63)

 

 

Chaotic BPSK Gaussian Noise

Chaotic BPSK Gaussian Noise1

Chaotic BPSK Gaussian Noise2

Theoritical BPSK Gaussian Noise

Theoritical BPSK Gaussian Noise1

Theoritical BPSK Gaussian Noise2



 

Proceedings of the 11th ICEENG Conference, 3-5 April, 2018 85 -CN 
 

 

 8 

 

IV- Conclusion 
 

In this paper, an analytical analysis is presented for a CSC in presence of GM noise as a model of UWA 

channel. The paper begins with a brief introduction about the privileges of the chaotic codes over the PN 

sequences, and a brief summery about the previous work related to the GM noise. After that, the GM noise 

is discussed and a simple example is given. A closed form for the probability of error is derived for BPSK 

signal in both spreading and non-spreading cases in presence of GM noise. A simulation comparison is 

performed for the traditional BPSK in the spreading and non-spreading cases in presences of AWGN and 

GM noises to verify the analytical results. The applied spreading code is the traditional chaotic code, with 

different code lengths. Two different scenarios are proposed to simulate the GM noise as an equivalent to 

two different components of Gaussian noises. The results show that the GM noise generally degrades the 

performance of the BPSK. The results show also that the analytical and the numerical results are 

completely matched. According to the results, applying the CSC improves significantly the system 

performance in presence of the GM noise according to the code length. The logistic and tent maps have 

nearly close initial values in presence of the AWGN channel, whereas in fading channels the initials have 

different values. The results show also that most of the enhancement operations have positive effect on the 

statistical properties when the initial values are optimized. The performance evaluation show that the 

traditional and ZM logistic codes has better performance compared with the Gold code in presence of FSF 

channel. In Relight fading channel the most of the logistic codes outperformed the performance of the Gold 

code. For the tent map, the ZM process significantly improves the performance of the ZM, and SBZM 

codes over the Gold code. 
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