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ABSTRACT 

The paper discusses an important class of defense and 

commercial applications in the context of Ground Target 

(Object) Identification, Classification, and Tracking.  The data 

base of target digital signatures is assembled and formed for a 

full spatial circle (360 degrees) analysis from such sources as 

High Resolution Radar and Synthetic Aperture Radar. These 

digital signatures are analized from which various spatial as 

well as frequency (wavelet) characteristics of the targets are 

formed and interpreted, in order to make good estimate of target 

pose angle. This angle is key for tracking maneouvering targets. 

Various statistical measures are obtained from digital signatures 

to assist in pose angle estimation. We also use certain 

geometrical considerations to determine an initial pose estimate 

which is the refined using a variety of correlation coefficients. 

Expected precision of pose estimate is within few degrees, i.e. 

within few neighboring target signatures. The paper presents 

several real life ground target signatures as well as several 

simulated signatures to illustrate our approach. 
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1. INTRODUCTION 

Modern developments in the areas of various high resolution 
radar technologies, made the ground targets reflection signatures 
much richer and useful features of these targets can be identified. 
Successful target identification and tracking exploit these feature 
information to determine target type and its dynamics. In the 
process of automatic target recognition, the pose angle estimates 
are obtained as well, provided target data base contains full 360𝑜 
target signatures in small angle increments. Figure 1 shows 
typical pose angle (aspect and depression) geometry. The 
depression angle relates to sensor position and aspect angle is 
deduced from radar signatures. For ground targets, since their 
velocity vector is aligned most of the time with the body's 
longitudinal axis, the pose angles carry kinematic information 
that can be used to improve target tracking particularly during 
the target maneuvering periods [3-14]. 

In this paper we continue our previous and continuing work 
related to new methodology for improved automatic target 
identification as well as pose estimate, which can in turn 
improve target tracking and reduce target miss-association 
probability. In a typical airborne application (USA JSTAR is 
good example) [15-18], a ground target is detected from a 
distance, identified and classified using stored target data base, 
and then tracked after that. In this paper we expand our work 

reported in [1, 2], where we analyzed certain number of targets 
in spatial domain in particular. Section 2 in this paper  reviews 
several targets signatures from USA public Moving and 
Stationary Target Acquisition and Recognition (MSTAR) 
program database [15-18]. The MSTAR data consists of SAR 
data in X-band, with l x 1 foot resolution, at 15o depression 
angle. In addition to these real targets we generate a number of 
our own synthetic targets as a reference targets to test our pose 
estimation methodology. In summary, we average radar raw data 
along X and Y coordinates and test them individually for target 
identification purposes. Each target has 274 signatures at 
different pose angles, for a full circle, given in a form of a radar 
digital bit map. We form corresponding target data base with  
additional target features useful in aiding in real time target 
identification, as elaborated in Section 3. In particular we use 
target geometry as well as autocorrelation and cross correlation 
spatial characteristics to draw conclusions about target features 
which would place it in a certain precise place in the target data 
base.  We analyze all 274 individual target signatures (total of 
360o) and form a variety of statistical measures to associate with 
each signature. Another approach is to use second order statistics 
such as autocorrelation envelopes with minimum and maximum 
frequency information, which can be identified with certain 
geometric and spatial dimensions of the targets.  We will also 
explore frequency (wavelet) aspect of the signature data in our 
future work. Note that in this case the “frequency” is an inverse 
of spatial rather than time coordinates. Besides standard first and 
second order statistics we also employ newly introduced 
statistical notion of Brownian Distance and the corresponding 
correlation index [19] which both measure independency of two 
random sequences. This is very powerful method and we employ 
it in target signature independence testing, for different targets 
and poses as well. Overall, the purpose of additional signature 
statistical analysis is to gain insight into key signature features 
which discriminate against other targets. The resulting expanded 
target data base has original raw radar data, as well as additional 
target features and statistics (Figure 4). This stored information 
is used in a subsequent real time target identification when its 
signature is compared against the data base in order to correctly 
identify the target with the lowest possible probability of wrong 
association. At the same time we also estimate pose in the 
process which in turn makes target tracking much easier and 
more precise. One notable historical ATR application is well 
known USA Air-force JSTAR platform [16-18] which was 
deployed in mid and late 1990s. In Bosnia and Herzegovina to 
enforce Dayton Peace Agreement (Kosovo as well). The 
platform was used for ATR and large arms collection 
confirmations. There is a current JSTAR modernization effort 
under way. Our methodology is applicable to other defense as 
well as commercial areas, such as traffic control. 
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II. TARGET SIGNATURE DATA BASE 

Basic target and sensor platform geometry is given in Figure 1. 
In [1] we used three signatures for analysis, and they are 
repeated here as a reference in Figures 2 (raw continuous data) 
and Figure 3 (16 digitized signature values). In [2] we expanded 
our spatial analysis to many more targets, digitization was at the 

 

level of 32 and 64 data points, and we also defined a synthetic 
target as a reference in statistical testing. In this paper we employ 
more precise data to make better target identification and pose 
estimate along the way. Figure 4 shows various components of 
our analysis, and  Figures 5, 6, and 7 show three real life target 
signatures. Data resolution is lx1 foot, depression angle is 15o. 
Figure 8 is our own made synthetic target  used as a reference in 
our analysis. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4. Target Identification and Pose Estimation 

 

 

Figure 1 Target and sensor platform geometry 
 

 

 

Figure 2 Continuous SAR range data over ΔR 

 

Figure 3 Digitized data, stationary target 1 
 

 

Figure 5. Zil truck raw SAR images 
 

 

Figure 6. Caterpillar bulldozer raw SAR images 
 

 

Figure 7. Tank T72 raw SAR images 

 

 

    Figure 8. rectangular synthetic target with random 

pixels 
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II. TARGET SIGNATURES AS STOCHASTIC PROCESSES 

There are a total of 274 signatures for 4 quadrants, i.e. 
for 360𝑜. These three real life targets span the range of different 
features and sizes. The MSAR data base [15-18], has more 
targets and our methodology can be applied to any of them, or 
to similar target data base. In order to analyze target signatures, 
let us first define two families of stochastic processes 
X(i,j)=X(Ti,θi) and Y(i,j)=Y(Ti,θi) as follows: 

X(Ti,θi)= Radar X signature, ith target, jth pose 

Y(Ti,θi)= Radar Y signature, ith target, jth pose 
(1) 

 

where I = 1,2,3,4 (1-3 are real targets while 4 is synthetic),    j = 
1, 2… 274 (4 quadrants, 360o). Table 1 summarizes all target 
and pose combinations [5]. The vectors X(I,j) and Y(I,j) are K 
dimensional; X(I,j)= [X1(I,j), X2(I,j), … ,Xk(I,j)]T, K is the 
number of radar signature pixels along X and Y. Figure 3 shows 
X(I,j) with K=16. In this paper K=32 or K=64 and similarly for 
Y(I,j). This number is based on two considerations; first, the 
number of significant signature pixels for all targets is K or less. 
If less than K, we append required number of zeros to the right 
of the signature. Second, for future research in wavelet domain, 
we want this number to be a power of 2. Signature numerical 
values are means along X and Y, X(I,j) and Y(I,j), of pixels gray 
values from MSTAR data base. Figure 9 shows one Zil truck 
(Target 3) signatures, the gray scale levels are translated into 
digital signatures by averaging the gray level values along the X 
and Y axis. In other words if we take the average of pixels of 
Figure 5 when the truck is at zero degrees in both X and Y axis 
we get Figure 9. Figure 10 adds variances as well, which are 
useful in target and pose discrimination. Note that the signatures 
are filtered and very small values to the left and to the right are 
set to zeros. The last row in Table 1 indicates jth Pose Sample 
Statistics (PjSS) for any target, across Xk(j) and Yk(j) , with 
k=1,2,…,K, j=1,2,…,274. We dropped target indicator “i” for 
simplicity. These statistics are summarized in Table 2 for X(j), 
with similar table for Y(j). More on this in Section IV. 

Table 1. Target Signature Template 

Pose/ 

Target 
Pose 1 Pose 2 … Pose 274 

Signature/ 

Correlation 

Target1/ 

Tank 

X(1,1)/
Y(1,1) 

X(1,2)/ 
Y(1,2) 

… 
X(1,274)/ 
Y(1,274) 

T1 SAC 

Target2/ 

Bulldozer 

X(2,1)/

Y(2,1) 

X(2,2)/ 

Y(2,2) 
… 

X(2,274)/ 

Y(2,274) 
T2 SAC 

Target3/ 

Truck 

X(3,1)/
Y(3,1) 

X(3,2)/ 
Y(3,2) 

… 
X(3,274)/ 
Y(3,274) 

T3 SAC 

Target4/ 

Rectangle 

X(4,1)/

Y(5,1) 

X(4,2)/ 

Y(4,2) 
… 

X(4,274)/ 

Y(4,274) 
T4 SAC 

Statistics P1 SS P2 SS … P274 SS CTC 

 

III. TARGET GEOMETRY ANALYSIS 

In this Section we consider a simplified target geometry and 
assume we have a rectangular target. Figure 11 illustrates this 
idea in (X, Y) coordinates using an angled target signature, 
between 0o and 90o. Note that not every target will be a perfect 
rectangular shape but this is very good approximation for 
asymmetric target if we are interested in its maximum (length) 
and minimum (width) dimensions. From Figure 11 we easily 
obtain the following set of three nonlinear algebraic equations 
which summarize geometric relationships among three key 
geometric features of the target signature, i.e. width, lengths and 
pose angle. These equations need to be solved for X-s given Y-
s, when we acquire “real time” target as well as for justification 
of their use for the known data base targets. 

X1 cos(X3) + X2 sin(X3) = Y1 

                         X1 sins(X3) + X2 cos(X3) = Y2                      (2) 

X1X2  = Y3 

 

 

 

 

 

 

 

 

In order to calculate Y1 and Y2 we need to perform further 
analysis of the target signatures. Namely, we will need to “clean 
up” or “pre filter” target signatures by eliminating all zero or 
near zero amplitudes right before the target signature exhibits 
significant spatial amplitude, starting from the left side. We can 
call these signature leading zeroes. Similarly we will clean the 
trailing zero on the right side of the signature. Equations 2 can 
be solved for a “real time” target once acquired by the sensor 
platform. The solutions X1 and X2 correspond to the length and 
width of the rectangular target, and X3 is corresponding pose 
angle estimate. The initial solution is generically presented in 1st 
quadrant (0 to 90 degrees) but real quadrant is determined in the 

 
 

Figure 11. Geometry of ideal rectangular target (Left) 

Figure 12. Synthetic target pose determination (Right) 

 

 

Figure 9.  Raw to X and Y digital target signature 
 

 

 

 

 

Figure 10. Target X and Y with corresponding variances 
 

 



second step when we calculate 1st order statistics. This will act 
as an initial estimate of pose and will identify the target type as 
well. Further use of other statistics will improve the estimate. 
That is the basic idea in our approach. The following example 
illustrates the approach. We chose a random synthetic target at 
224th position in the synthetic target data base (Figure 12 for 
simulated raw pixels, Figure 13 for averaged X and Y 
signatures). After solving the equations for X1, X2, and X3 we 
get the first estimate of the target geometry and pose (Table 2). 
This information determines the target position at 50 (1st 
quadrant), out of 274 in the circle. The real quadrant (4 in this 
case) is determined by analyzing three more signatures shifted 
90 degrees from target 50, and situated in quadrants 2, 3 and 4 
(Figure 14). Next we take three synthetic targets from target data 
base plus a number of additional signatures with poses around 
signature 50, shift them 90 degrees as well, and compare their 
signatures with the signatures in Figure 13. For these 
comparisons we use several correlation coefficients, namely 
Pearson, Spearman, Kendal, and also Brownian to identify the 
target and also right quadrant. Tables 3 and 4 show correlations 
for X and Y, for these four correlation coefficients, for various 
poses, and their sum (boldfaced) as an ultimate measure of 
coincidence between the correlations. The correlations are at the 
peak with Target 1 and pose 225 (7.6881 vs 6.7915 and 6.4929), 
and the target is in 4th quadrant. Hence we missed by one pose 
position, error of 1 in 274 or 0.365%, which is an excellent 
estimate between (i) geometrical and (ii) correlation 
comparisons. See our papers [1, 2] for more information on 
correlation coefficients. In general, this still does not mean we 
found the correct pose, it is an initial estimate only. More 
statistical tests can be done to find the correct pose.  

 

Figure 13. X and Y signatures for synthetic target 

Table 2. Target Pose Estimation Example 
 

X1  (Width) 8.98 pixels 

X2  (Length) 31.06 pixels 

X3  (Pose) 65.63 degrees 

Position No 50 

 

  

Figure 14. Geometric symmetricity of target signatures 

Table 3. 1st Target Correlations 

223 224 225 226 227 

0,9697 0,9712 0,9719 0,9680 0,9724 

0,9751 0,9789 0,9795 0,9807 0,9809 

0,9762 0,9783 0,9824 0,9799 0,9789 

0,9462 0,9808 0,9803 0,9803 0,9645 

0,9004 0,9086 0,9213 0,9109 0,9073 

0,9001 0,9447 0,9419 0,9415 0,9231 

0,9395 0,9416 0,9425 0,9346 0,9444 

0,9624 0,9677 0,9682 0,9698 0,9701 

7,5696 7,6719 7,6881 7,6657 7,6417 
 

        Table 4. 2nd and 3rd Target Correlations 
226 227 228  227 228 

0,8148 0,8212 0,8152  0,7736 0,7761 

0,9415 0,9476 0,9514  0,9227 0,9272 

0,8458 0,8496 0,8503  0,7979 0,7981 

0,9210 0,9213 0,9213  0,9041 0,9045 

0,7391 0,7507 0,7546  0,6953 0,6911 

0,8699 0,8694 0,8670  0,8474 0,8494 

0,7003 0,7095 0,7013  0,6477 0,6508 

0,9144 0,9224 0,9278  0,8892 0,8956 

6,7469 6,7915 6,7890  6,4780 6,4929 

 

We check the result (pose 225) by comparing X and Y signature 

variances. Without going into the details, we obtain the same 

pose 225 estimate. At this point we can continue with more 

statistical tests (Sections IV and V) to fine tune the estimate to 

correct pose 224 or be satisfied with estimate at 225. For the 

real signatures there may be some additional pose estimation 

errors hence more tests could be required. See next Sections. 
 

  
 Figure 15. Target signature variances 

 

 IV. SIGNATURE STATISTICS ACROSS POSES 

Table 5 summarizes a list of signature statistics which can be 
used for further pose estimation refinement. We are currently 
looking into the importance of all of the individual statistics in 
order to form their optimal combination, for not all carry useful 
information. Table 5 is a summary of all the statistics, Figure 16 
and 17 have their values for Zil truck (Figure 5) and ideal 
rectangular (Figure 8). Table 6 summarizes sample 
autocorrelations which are relevant for target identification and 
pose estimation. The autocorrelation measures signature 
correlation between components in X(i,j), for each target and for 
every pose individually, for a total of 4 times 274, i.e. 1096 
autocorrelations. Likewise for Y axes. The autocorrelation 
captures certain geometrical features of the targets. In 
particularly the zero crossing Xzcor indicates the relative size of 
the signature projection onto X. The zero crossing also 
corresponds to the  number of non-zero signature samples. 



Table 5. List of Target Signature Statistics 

Statistics Description 

Xmax , kmax Maximum signature and position among k 

Xm Mean signature value Σk Xk(j)/k 

Xmead Signature median, ordered middle value 

Xvar Signature variance Σk [Xk(j) - Smean]
2 /k 

Xstedv Signature standard deviation (Svar)
0.5 

Xvare Signature variance energy Σk [Xk(j) - Smean]
2 

Xmax/mean Signature max/mean ratio  Smax/Smean 

Xvarm, kmv Max variance and position in K samples  

Xenergy Signature energy  Σk X
2

k(j) 

Xskew Signature skew Adjusted FP 

X1
skew Adjusted FP signature skew 

X1
skewv Adjusted FP signature skew variance 

 

Figure 17. Synthetic signature statistics across 3 poses 

Table 6. Pose j Sample Autocorrelations (PjSS) 

Variable Description 

Xcor Signature autocorrelation function 

Xzcor Signature autocorrelation zero crossing 

Xecor Signature autocorrelation error 

Xnpix Number of pixels along X 
 

We assume that signature has no leading zeros for they would 
shift autocorrelation zero crossing. As pose angle change we get 
different zero crossings for different target projection onto X and 
Y. In Section V we refer to zero crossing man/min ratio, 
Xz/max/min, which indicates approximate length/width ratio. 
Zil truck dimensions can be found on line and compared. Figure 
17 shows ideal rectangular target, with length L=32, and width 
W=16 feet, for 1 foot resolution as in MSTAR. Here zero 
crossings correspond to W, L and 45o X projection, so that we 
have Xproj = Lsin(45)+Wcos(45)=35.6.  

 
V.  SIGNATURE STATISTICS ACROSS ONE TARGET 

The last column in Table 1 indicates ith Target Signature 
Auto Correlation (TiSAC) features for each of four targets across 
every pose, for both X(i,j) and Y(i,j). We first consider two 
correlation measures, Pearson and Spearman coefficients. Then 
we look into pose shifted autocorrelations. Table 7 has 
corresponding statistics summary. 

Table 7. Auto Correlations Features (Ti SAC) 
 

Variable Description 

Xp Pearson coefficient 

Xs Spearman coefficient 

Xpsauto Pose shifted autocorrelation envelope 

Xzpauto Pose shifted autocorrelation zero crossing 

Xz/max/min Autocorrelation max/min zero crossing  
 
We can start with X(1,1) and correlate it with X(1,2) , then with 
X(1,3) , etc., and finally with X(1,274) forming envelope of 
correlations. This results in a 4x274 = 1096 correlations. These 
capture cross statistics for poses and can be used to discriminate 
poses. Figure 18 and 19 show Pearson and Spearman 
coefficients, as well as correlation envelopes, as a function of the 
pose for Zil Truck and for our rectangular synthetic target.  

 
Figure 18. Zil truck pose shifted correlations 

 

 

Figure 16. Zil truck signature statistics across 3 poses 
 



VI.  STATISTICS ACROSS DIFFERENT TARGETS 

The final step in our target signature analysis is to look at the 
cross target statistics and correlations. We will make a practical 
assumption that the corresponding target signatures form sets of 
independent stochastic processes, or at least uncorrelated 
(orthogonal) processes. For example we correlate X(1,j) with 
X(2,j), then with X(3,j), and with X(4,j), assuming the same pose 
angle j, against independence or uncorrelated (orthogonal) 
assumption. Each of correlations produces an envelope for 274 
poses, for total of 4 envelopes. In view of that, we use cross 
covariance and correlations to test lack of correlation, and also 
classic Chi-Square and newly introduced Brownian Distance 
Covariance [21], to test for independence among various target 
signatures. Also, when a “real time” target signature is acquired, 
it will also be tested against all other four sets of stored target 
signatures. Table 8 summarizes target cross correlation features, 
both for X and Y signatures. 

Table 8. Cross Targets Correlation Features (CTC) 

Variable Description 

χ Cross target Chi-Square test  

V2
k(i,j) Cross target Brownian distance covariance 

R2
k(i,j) Cross target Brownian distance correlation 

V2
k Target Brownian sample distance variance 

Xccor Cross target correlations 
 

Chi square test is used to test the independency of two 
sequences [1, 2]. The test returns the value from Chi-squared 
distribution and the degrees of freedom number [22-24]. The test 
is defined as: Where Ak = actual sample value, and Ek = expected 
sample value, and the sum is from 1 to K. We choose Ak = 
Xk(1,j) and vary Ek so that Ek = Xk(2,j) , Ek=Xk(3,j) , and Ek = 
Xk(4,j) . Similarly if a “real target” is chosen. Low values of χ2 
is an indicator of independence. The value of χ2 is always 
positive or 0 if Ak = Ek for every k. See Figure 20. 

Once χ2 is calculated, a program like Matlab or Excel, returns 
“the probability P that a value of χ2 statistic at least as high as 
the value calculated could happen by chance under the 
assumption of independence”, with an appropriate number of 
degrees of freedom, df=K–1 . The test is most appropriate when 
Ek’s are ≥ 5, hence we scale the signatures for that condition. 

Finally, we use the newest form of correlation [21], i.e. 
distance covariance and correlation (Brownian distance 
covariance and correlation). The key is that zero correlation 
implies independence, plus the method captures non stationary 
and nonlinear correlations as well.  

 

 
Figure 19. Ideal rectangular pose shifted correlations 

 

 
Figure 21. Cross target Brownian distance covariance 

 

 
Figure 22.  Cross target Brownian distance correlation 

 

 
Figure 20. Cross target chi-square test 

 

 
Figure 23. Target Brownian sample distance variance 

 



7. CONCLUSION 

In this paper we present continuation of our previous work 
in analysis of digital target signatures and the corresponding 
problem of pose estimation.  Quality pose estimation is a 
required step in subsequent automatic target tracking operation. 
The target signatures are obtained from USA MSTAR public 
data base where variety of commercial as well as military targets 
are included, obtained by SAR and HRR radars. The 
methodology we employ is based on geometrical as well as 
several statistical correlation measures such as various 
autocorrelations and cross-correlations, as well as Brownian and 
Chi Square statistical tests for sequence independence, which 
compare stored target data base against real time target. In 
particular we start target identification and pose estimation 
process by (i) using target geometry which reliably determines 
the target type and 1st quadrant pose estimate, we then follow 
with (ii) variety of first order statistics to further fine tune the 
pose, and (iii) more 2nd order statistics for the final pose 
refinement. In this paper we presented first two items for 
synthetic targets, and are currently working on the item (iii) and 
real target signatures. Certain geometrical features of the targets 
can be identified from the corresponding correlations. In a 
follow up research we will address all these additional items as 
well as corresponding frequency based on Haar wavelet 
analysis, combine it with spatial analysis, and use hypothesis 
testing when determining real target identification and pose 
estimate. These input will serve as entry data for target tracking. 
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