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Abstract - The present work investigates an appropriate
algorithm based on Multilayer Perceptron Neural Network
(MPNN), Apriori association rules and Particle Swarm
Optimization (PSO) models for predicting two significant core
safety parameters; the multiplication factor Keff and the power
peaking factor Pmax of the benchmark 10 MW IAEA LEU
research reactor. It provides a comprehensive analytic method
for establishing an Artificial Neural Network (ANN) with self-
organizing architecture by finding an optimal number of
hidden layers and their neurons, a less number of effective
features of data set and the most appropriate topology for
internal connections. The performance of the proposed
algorithm is evaluated using the 2-Dimensional neutronic
diffusion code MUDICO-2D to obtain the data required for the
training of the neural networks. Simulation results
demonstrate the effectiveness and the notability of the
proposed algorithm comparing with Trainlm-LM, quasi-
Newton (Trainbfg-BFGS), and Resilient Propagation (trainrp-
RPROP) algorithms.

Keywords:  Apriori Association Rules; Particle Swarm
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I. INTRODUCTION

Emulating the calculations with Artificial Neural Networks
(ANNs) in the field of nuclear engineering has been widely
used in recent years. ANNs were applied successfully as an
advanced tool for simulating several reactor physics
parameters [1, 2, 3, 4, 5, 6]. Fuel management scheme is a
branch of nuclear engineering, which aims to determine the

best fuel arrangements throughout a nuclear fuel cycle. The
fuel-reloading process has important effect on both safety
and economics. Finding the optimum configuration of fuel
assemblies requires a huge amount of calculations in
classical methods. Classical methods are not capable of
performing this amount of calculations in a reasonable time.
For complicated tasks like those associated with the nuclear
fuel management optimization problem where an enormous
number of possible arrangements exist in the available
search space, the use of Artificial intelligence (AI) is a
growing need. The main purpose in using ANN in a nuclear
fuel management optimization is to reduce the computation
time usually needed in such optimization processes and also
to present comprehensive exploration to find endurable good
configurations. The proposed algorithm is presented to find
the optimal neural network architecture for predicting core
safety parameters, such as multiplication factor Keff and
power peaking factor Pmax, in nuclear research reactors. This
was carried out through functioning design process that
includes new strategy for learning algorithm to select
effective features of the data sets, find an optimal number of
hidden layers and their neurons, and topology connections.
In [2] and [7], ANN architecture is used in predicting core
safety parameters. However, even though the predictive
results achieved were globally satisfactory, the convergence
during the training process was time-consuming for
investigated parameters.

The configuration of the neural network depends highly on
the problem. Thus, a suitable architecture is determined for
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each application by the trial and error. It is often necessary
to perform a lot of experiments that are time-consuming to
get the optimal architecture and parameter settings for the
neural networks, and the performance of the neural network
relates highly to the experience of the users. The choice of
the number of hidden nodes and the weights initialization
are a crucial problem for a multilayer neural network. In
general, the number of hidden units is associated with the
complexity of the functional mapping from the input to the
output.

In general, too large a network may tend to overfit the
training data and affect the generalization capability,
whereas too small a network may not even be able to learn
the training samples due to its limited representation
capability. In addition, a fixed structure of overall
connectivity between neurons may not provide the optimal
performance within a given training period. Therefore, some
attention has been given to the problem of how to construct
a suitable network structure for a given task. Another
remaining issue in designing the networks is to determine
the initial weights that make the neural network
convergence fast and improve neural network generalization
capabilities. Many researchers have paid attention to the
optimization of network structure and connection weights.
References [8] and [9] proposed a modification approach to
initialize the Neural Network (NN) weights and to
determine the optimal number of hidden nodes for NN.
Reference [10] presented an improved genetic algorithm to
tune the structure and parameters simultaneously. In [11], a
hybrid Taguchi-genetic algorithm is used to solve the
problem of tuning both the network structure and
parameters. In [12], a novel Hybrid Higher Order Neural
Classifier (HHONC) based on HONN models is introduced,
and then using the proposed classifier over various
benchmark statistical datasets. A hybrid model Partial Least
Square Neural Network (PLSNN) which combines PLS and
NN is developed in [13] to enhance the detection
performance, and also a Quantum-based Neural Network
(QNN) is proposed in [14].

The proposed algorithm can reach to a consolidated
structure size, which it based on a priori knowledge during
several training phases, assisted by Apriori algorithm of
association rules, and it used particle swarm algorithm for
an optimization process to minimize the number of training
phases. This algorithm is considered as initiative step for
using this work as computational tool for an optima1 fuel
management in nuclear reactors. It is developed on the
benchmark IAEA (International Atomic Energy Agency) 10
MW benchmark LEU (Low Enriched Uranium) core (IAEA
TECDOC-643, 1992) [15].

The developed 2-Dimensional neutronic diffusion code
MUDICO-2D [16] is used to obtain the data required for the
training of the neural networks. The structure of this paper is

as follows. In section 2, the reactor core model is
introduced. In section 3, a description of the proposed
algorithm will be detailed. In section 4, the extensive
experimental results of proposed algorithm will be
discussed. In the last section, the concluding remarks will be
offered.

II. IAEA 10 MW BENCHMARK REACTOR CORE

Due to restricted trade in High Enrichment Uranium (HEU)
based fuel; the reactors around the world are being
converted to use LEU based fuels. In order to provide

guidelines and facilitate the reactor conversion from HEU to
LEU fuel, IAEA devised a standard benchmark Material
Test Reactor (MTR). The reactor is a 10 MW tank-in-pool,
Material Test Reactor (MTR). It has been devised to
facilitate the conversion of MTR’s fuelled with HEU based
fuels to use LEU based fuels.

The reactor core is an arrangement of 5x6 matrix having 21
standard fuel elements of 23 plates each  and 4 control fuel
elements with 17 plates. It is reflected by graphite on two
opposite sides parallel to fuel plates, with thickness of one
fuel element. The core is immersed in light water. There are
five flux traps, one at the center of the core and one each at
the four corners of the core as shown in Fig.1 [17]. For
calculation needs, a small modification was introduced in its
initial core arrangement, to guarantee geometrical
asymmetry in the core and subsequently to obtain the
sufficient search space.

A total of 30 positions were considered. For better
representation of various states of the reactor core during its
useful life, ranging from its beginning of life to the end of
life, several configurations have been taken into account and
emulated using both standard and control fuel element with
different burn-up, ranging from fresh fuel (FF) to 50% (FF,
5%, l0%, 25%, 30%, 45%, 50%) for the first one and from
fresh fuel to 30% (FF, 25%, 30%) for the second one. The
reactor core was then transformed into a vector form of 30
positions so that it can be presented to the networks as input
values.
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Fig. 1: 10 MW IAEA benchmark research reactor core

The reactor core was modeled using the 2-Dimensional
neutronic diffusion code MUDICO-2D for the referenced
target values, and using several established inference rules
to prevent both high power regions and high reactivity
difference. Finally, a total of 572 core configurations have
been created, in which 542 were used for the training
process, whereas the remaining set was used to test the
developed network performance. The inference rules stated
are introduced in terms of restrictions and constraints that
will not be contravened, during the optimization process;
otherwise the safety margin of the reactor should be
provoked. These heuristics are described as follow:

• Fresh fuel elements cannot be moved into central
positions of the core as shown in Fig.2 [3].

• An exchange between fresh fuel and highest burned
fuel elements (45 and 50%) is prohibited.

• Highest burned fuel elements should not be moved
into the peripheral region.

• Control fuel elements are in fixed positions.
• Only one type of control elements should be

present in the core during one cycle.
• Foursomes assembled fresh fuel elements are

excluded.

Fig. 2: Reference core arrangement

III. PROPOSED ALGORITHM

We have two externally supplied inputs; the first input is the
given training data set which is denoted by T, and the
second input is empty data set denoted by D. The inputs to
proposed algorithm can help to formalize the requirements
and restrictions that the architecture must fit. The quantities
produced after applying the proposed algorithm are the
outputs which are organized as follows: the number of
hidden layers of neural network architecture is denoted by J,
the number of nodes for each hidden layer J is denoted by I,
the term TOP is used to represent neural network topology,
the term RMSE is used to measure the root mean square
error of the network, and finally the overall classification
accuracy of the network is denoted by ACC. The goal of this
algorithm is to establish an optimal artificial neural network
structure with self-organizing architecture included the most
effective input features, number of hidden layers and their
hidden neurons, network topology. It can reach a compact
structure size, based on a priori knowledge from a set of
training samples, assisted by Apriori algorithm for
association rules and particle swarm for optimization
process. The proposed algorithm is organized in 16 steps as
shown in Fig. 3.

Fig. 3: Pseudo code of proposed algorithm.

First normalization process is applied to reduce
redundancies of data in database, and manipulate attributes
in a desired appropriate form. An initial NN is then created
consisting of: input layer, HJ (NJi neurons), and output layer,
network topology is not recognized yet. Specifying
minimum support and minimum confidence; Apriori
algorithm finds the most effective sets of related data set
inputs (features). Each extracted features set Si construct a
hidden node NJi, where features of this set Si are input of the
new constructed hidden node NJi. So, all possible hidden
nodes are equal to discovered sets Si and their features are
input for constructed nodes to build network topology,
which leads to minimizing in the connections.
PSO algorithm is used to find an optimum number of hidden
nodes in each hidden layer which achieves highest accuracy,
thus by determining the best values of support and
confidence that give the highest performance for the
structured network.  A dynamic strategy is used to train
neural network; this strategy can insert or remove hidden
nodes and layers, and it can change topology of neural
network via the measurement of classification accuracy in
the training process. Classification accuracy and root mean
square error (RMSE) are used to decide whether neurons
should be inserted or deleted. Initially, a network with one
hidden layer and one hidden neuron is constructed, and then

Input: Training data set T, and empty data set D.
Output: J, I, TOP, RMSE, and ACC number of hidden layers, number

of nodes for hidden layer J, neural network topology,
root mean squared error, and overall accuracy,
respectively.

Step 1: Initialize original data: by normalization process to form
training data set.

Step 2: Initialize neural network architecture: included HJ, and NJi

to set J=0, and i=0.
Step 3: Update D: to equal T.
Step 4: Set iterative variable: J = J +1.
Step 5: Data preparation: D is represented as nominal attributes.
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new hidden neurons (only one neuron is inserted at a time)
are incrementally changed. Each new hidden neuron and
hidden layer is trained to minimize the current network error
in order to enhance the performance of the network. A
pruning approach is applied to enhance the selection, and
remove the unnecessary hidden neurons (or connections)
either during training or after convergence to a local
minimum. Finally, we stop when pre-specified error
requirement is found, or no performance refinement is
noticed.

IV. EXPERIMENTAL RESULTS

Experimental studies are presented to prove the
effectiveness and the notability of proposed algorithm. We
applied our proposed method to predict two safety
parameters (Keff and Pmax) of a benchmark 10 MW IAEA
LEU core research reactor, where they are important for
attempting to optimize the performance of the reactor. For
each parameter, we normalized the data over each feature
value. First step, construct an optimized network by
applying our proposed algorithm using the desired database.
The information required in the related database will contain
a coupled input value with the corresponding target output
values. These values are used to train the networks until the
error reaches a desired value. Several experiments have been
executed by varying the two parameters confidence
(CONF.) and support (SUPP.) that measure the strength of
association rules. PSO determines the optimal values of
CONF.
and
SUPP.
that

achieve the highest performance for the structured network.

Once a network has been structured it is ready to be trained.
Hence, a supervised training has been carried out for each
parameter with both the inputs and their associated outputs
provided. The constructed network processes the inputs and
compares its resulting outputs against the desired outputs. A
total of 542 configurations were used for the training
process. The training results for the multiplication factor
Keff, and power peaking factor Pmax are presented in Tables I
and II respectively. After training (Second step), the
constructed network is created for each parameter and tested
against the unseen data. 30 configurations were devoted to
this purpose. The prediction results for Keff and Pmax

parameters were shown in Tables III, IV respectively. The
altitude of classified accuracy using proposed model can be
appeared by sensitive rates, which compared with
Levenberg - Marquardt (Trainlm-LM), quasi-Newton
(Trainbfg-BFGS), and Resilient Propagation (trainrp -
RPROP) algorithms [17]. The reported results in tables V,
VI are averaged over 50 trials of experiments. The averaged
values of the following parameters were used to measure the
accuracy, number of selected features, number of preserved
nodes in the hidden layers and mean accumulated CPU time
the training process taken.

TABLE I. Training results for the multiplication factor Keff

TABLE II.  Training results for the power peaking factor Pmax

CONF. SUPP. No. of Selected
Features

No. of Hidden
Layers

No. of Hidden
Nodes

RMSE Performance
%

Time
(S)

0.9 0.15 7 1 10 0.0228 70.66 0.33

0.7 0.25 3 1 2 0.0263 60.7 0.27

0.6 0.35 6 1 14 0.0234 58.86 0.33

0.5 0.55 2 1 3 0.0271 59.23 0.33

0.3 0.4 3 1 4 0.0269 59.23 0.31
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TABLE III.  Testing results for the multiplication factor Keff

CONF. SUPP. No. of Selected
Features

No. of Hidden
Layers

No. of Hidden
Nodes

RMSE Performance
%

Time
(S)

0.9 0.15 7 1 10 0.0245 83.33 0.03

0.7 0.25 3 1 2 0.0234 80.07 0.02

0.6 0.35 6 1 14 0.0254 70 0.02

0.5 0.55 2 1 3 0.0244 73.33 0.02

0.3 0.4 3 1 4 0.0244 73.33 0.03

TABLE IV.  Testing results for the power peaking factor Pmax

CONF. SUPP. No. of Selected
Features

No. of Hidden
Layers

No. of Hidden
Nodes

RMSE Performance
%

Time
(S)

0.9 0.05 9 1 25 0.1171 93.33 0.02

0.5 0.1 5 1 6 0.1795 86.67 0.02

0.3 0.15 5 1 12 0.1806 86.67 0.03

0.2 0.2 2 1 2 0.208 83.33 0.02

TABLE V. Comparison of selected features, hidden nodes number, and performance

No. of Selected
Features

No. of Hidden
Nodes

Performance % Time (S)

Proposed Algorithm Keff 7 10 83 0.03

LM 30 15 83 4.98

BFGS 30 20 62 112.92

RPROP 30 25 38 31.53

CONF. SUPP. No. of Selected
Features

No. of Hidden
Layers

No. of Hidden
Nodes

RMSE Performance
%

Time
(S)

0.9 0.05 9 1 25 0.0917 88.192 0.22

0.5 0.1 5 1 6 0.1367 75.28 0.2

0.3 0.15 5 1 12 0.1375 75.28 0.19

0.2 0.2 2 1 2 0.1404 70.11 0.2
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TABLE VI. Comparison of selected features, hidden nodes number, and performance

No. of Selected
Features

No. of Hidden
Nodes

Performance % Time (S)

Proposed algorithm Pmax 9 25 93 0.02

LM 30 40 59 37.22

BFGS 30 20 42 112.92

RPROP 30 20 31 70.38

From the results in tables V and VI, it is clearly seen that,
the proposed algorithm achieves the highest classification
accuracy with lowest number of nodes in hidden layers
which leads to provide the efficiency of treatment service
with as little as possible in the decision making time after
the construction of neural network topology. Besides, it is
able to extract the most effective features of data sets.
Minimizing in the connections and feature extraction are
the main reasons of the improvement of training time of our
algorithm comparing with the other self-organizing neural
network and classifier algorithms which make the proposed
algorithm faster than other approaches after reaching
network structure by training phase.

Finally, after finishing our experiments, two MPNNs have
been developed as an optimized structure, based on typical
three layers (input - hidden - output) model. The first
network predicts Keff, and the second network predicts Pmax .
The reactor core’s 30 positions was transformed into a
vector form which presented to the neural networks as input
values to be treated, the input values have the following
symbols (A1 to A30).

Fig. 4 shows the typical architecture of neural network that
predicts Keff , it contains 7 neurons as input (A2, A11, A12,
A18, A20, A21, A28), 10 hidden neurons, and one neuron
as output (Class_ Keff). Fig. 5 shows the typical architecture
of neural network that predicts Pmax , it contains 9 neurons
as input (A1, A2, A10, A11, A12, A15, A18, A20, A30), 25
hidden neurons, and one
neuron as output (Class_
Pmax).
As shown in Figs. 4, 5
not all 30 features are

included, only 7, 9 features are extracted respectively, and
minimizing in the connections are also shown.

V. CONCLUSION AND FUTURE WORK

   In this paper, we have proposed a comprehensive
algorithm based on Multilayer Perceptron Neural Network
(MPNN) for predicting significant core safety parameters.
The proposed algorithm can reach a consolidated structure
size of artificial neural network with extracting most
effective features, based on a priori knowledge from a set of
training samples, assisted by Apriori algorithm for
association rules and particle swarm for optimization
process. Predicting two safety parameters (Keff and Pmax) of
a benchmark 10 MW IAEA LEU core research reactor is
used in order to show the suitability and effectiveness of the
proposed model for classification tasks.

Simulation results show that the proposed algorithm
achieves the highest classification accuracy with lowest
number of nodes in hidden layers in smallest training time
in comparison to all alternative classifier algorithms,
besides, it is able to extract the most effective features.
Further studies is using the ANN that predicts the Keff and
the Pmax as preceding step in the Simulated Annealing (SA)
method to automate the distribution process for the fuel
assemblies inside the reactor core.
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Fig. 4: Typical architecture of MPNN predicts Keff

Fig. 5: Typical architecture of MPNN predicts Pmax
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