
Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

9th International Conference
on Electrical Engineering

ICEENG 2014

CHA: Concrete Hash Algorithm
A NEW PROPOSED HASH FUNCTION ALGORITHM

By

Hadia M. El Hennawy 1 Alaa E. Omar 2 Salah M. Kholaif 2

Abstract:

Cryptographic hash functions are an important tool in cryptography for applications
such as digital signature of messages, message authentication, and key derivation. This
paper presents a new cryptographic keyed hash function design, named Concrete Hash
function Algorithm, CHA-128, which has some difference from the popular hash
function designs and used for ensuring integrity of messages to a higher degree to suit
the fast growing network applications. The function structure is designed permit a wide
variety of implementation tradeoffs. Also CHA is proposed as very smooth 128 bit hash
function algorithm, which is designed according to permit a wide variety of computing
implementation tradeoffs. By very smooth, it means that the smoothness bound is
multiple fixed sequential functions. A valuable comparison between the software
performance of CHA-128 design and some popular hash function algorithms designs is
performed.

Keywords:

Hash code; Message integrity; SHA-family; Message Digest.

ـــ
1 Faculty of Engineering, Ain Shams University, Cairo, Egypt.
2 Technical Research Center, Cairo, Egypt.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 2

1. Introduction:

Cryptographic hash functions play an essential role within a wide range of information
security mechanisms and protocols. Their most crucial role is to provide data integrity
and efficiency for digital signatures and general authentication purposes and key
derivation. When two parties are communicating over an insecure channel, they need a
method by which the original information sent by the sender can be accepted by the
receiver without an uncertainty on possible alteration or changing. The integrity of the
message can be verified by the hash functions which involves all the bits of the whole
message. It accepts the variable size message as input and produces a fixed size output
as the hash code. A change in any bit or bits in the message results in change in the hash
code thus providing an indication of message tampering.
For a cryptographic hash function H, it must be able to overcome all known types of
cryptanalytic attack. At least, it must avoid the following properties, Preimage: given y
= H(x), find x’ such that H(x’) = y, 2nd preimage : given an x and y = H(x) find x’ ≠ x
such that H(x’) = y, and Collision: find x and x’ such that x’ ≠ x and H(x) = H(x’).
For an ideal hash function with an m-bit output, finding a preimage or a second
preimage requires about 2m operations and the fastest way to find a birthday or square
root attack is approximately 2m/2 operations [1]. Most popular hash functions are
designed using Merkle-Damgaard model [2]. This model simplifies the management of
large inputs and produces a fixed length output. The message is viewed as a collection
of m-bit blocks. Many hash functions such as Message Digest, MD, family [3] and
Secure Hash Algorithm, SHA, family [4] are based on this idea. New proposed hash
function, CHA, certainly differs from all hash function algorithms of the MD family
(MD5, SHA-1, SHA-2) as it uses a private function construction. Also, CHA-128 is
differs from new standard hash algorithm, KECCAK [5], as SHA-3, which uses a
sponge function construction. This fact can be considered neither as an advantage nor a
disadvantage. Private functions are a new construction that will now, attract more
attention from cryptographers. Certainly this is a disadvantage as this construction is not
very well analyzed yet. However, it is an advantage that CHA has not the same structure
of either MD family or SHA-3, which means that there is no need to have two
algorithms with similar construction.
Given this context, it is clear that the community should welcome new approaches to the
design of secure hash functions. This paper is structured as follows. Section II describes
motivations and design requirements for a new proposed hash function. Next, in Section
III, we present our proposed hash algorithm structure. We discussed some of the
analysis, performance, and security features of our scheme in Section IV, and finally we
gave our conclusion in Section V.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 3

2. Motivation and Design Requirements for CHA

Cryptographic hash functions are a useful building block for several cryptographic
applications. The most important are certainly the protection of information
authentication and digital signatures. Hash functions are functions that map an input of
arbitrary length to a string of fixed length, the hash code. If these mappings satisfy some
additional cryptographic conditions, they can be used to protect the integrity of
information. Other cryptographic applications where hash functions are useful are the
optimization of digital signature schemes, the protection of pass phrases and the
commitment to a string without revealing it. In short, they need to be both efficient and
secure and in most commercial applications, they need to run quickly in software on all
the common hardware platforms.
In 2005, cryptanalysts found attacks on SHA-1 suggesting that the algorithm might not
be secure enough for ongoing use. NIST required many applications in federal agencies
to move to SHA-2 after 2010 because of the weakness. Although no successful attacks
have yet been reported on SHA-2, they are algorithmically similar to SHA-1. In 2012,
following a long-running competition, NIST selected an additional algorithm, Keccak,
for standardization as SHA-3. But the work on SHA-3 is not completely done yet.
For KECCAK to achieve security assurance, it is vital that third-party cryptanalysis
reviews its security from multiple points of views.
However, introducing a new structure in cryptographic algorithms also involves the risk
of unexpected weaknesses.
Clearly, the current situation brings us to the conclusion that it would be prudent to
design a new hash algorithm avoiding leakage, continuous cryptanalyze efforts, and
hidden risks of current implementations, from these considerations; we believe that our
new proposed design of hash function should:
 Satisfy large security margin. At the very least it must be one-way, collision-free

and multiplication-free.
 Elegant design: can be used as a replacement for popular hash functions.
 Satisfy high efficiency in both hardware and software implementations.
 Give good general performance and flexibility.

One common use of hash functions is to “destroy” any structure that may exist in the
input, while preserving most of its entropy. Validity of using hash functions for entropy
extraction is not based on their cryptographic properties but rather on our belief that a
good hash function destroys most of the dependencies that may exist in the bits of its
input. Finally, we have to think more before we make specific recommendations for
specific applications.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 4

3. Description of CHA-128

CHA-128 is a keyed hash function designed for hashing any input message, using secret
key that is equal to 128 bits in length, as initial value of stream cipher. CHA-128
algorithm outputs any input message stream into 128-bit block. Also, it is a software-
oriented cipher based on 32-bit operations (such as 32-bit XOR and addition modulo
232), and references to software design small fixed blocks. Accordingly, CHA can be
used in many computing applications, and many cryptographic requirements. Software
design of CHA-128 is implemented using a uniform C++ programming language,
where they have conducted it on a 2.4 GHz Pentium 4 processor and 512 Mbyte RAM
Personal Computer.

3.1. Input Block Length and Message Length Management.
An input message is processed as 128-bit blocks. Padding is used to make the length of
the original message equal to a value exactly multiple of 128 bits, if its length is more or
less. The padding consists of a single 1-bit, followed by as many 0-bits, as required.
After padding is added, the original length of the message is calculated and added at the
end of the message as a 128-bit value. In the case of a really long message, the length of
the message is calculated as the original message length modulo 2128.

3.2 Structure of our Proposed.
The CHA-128 bit algorithm uses four 32-bit working variables, T0 to T3, and four 32-bit
result variables states, S0 to S3; these constitute all the states of the algorithm from round
to round. This algorithm also uses four 32-bit intermediate values, T0, T1, T2 and T3, and
number of iterated rounds. An iterative of hash function breaks up a message into blocks
of a fixed size and iterates over them with a compression function. CHA operates on
128-bit blocks. The size of the output of CHA is the same as that of the underlying hash
function, 128 bits in our case, although it can be truncated if desired.

3.2.1 Open Input File
The first operation generally performed on any object, In order to open a file with a
stream object, of one of these classes is to associate it to a binary file. This procedure is
known as to open a file. An open file is represented within a program by a stream object
and any input or output operation performed on this stream object will be applied to the
physical file associated to it.

3.2.2 Read Key

In cryptography, a keyed-hash message authentication code (HMAC) is a specific
construction for calculating a message authentication code (MAC) involving
a cryptographic hash function in combination with a secret cryptographic key.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 5

As with any MAC, it may be used to simultaneously verify both the data integrity and
the authentication of a message. Any cryptographic hash function may be used in the
calculation of an HMAC. The cryptographic strength of the HMAC depends upon
the cryptographic strength of the underlying hash function, the size of its hash output,
and on the size and quality of the key. Recall our goal is to build secure message
authentication functions from cryptographic hash functions. A first clear obstacle is that
while secret keys are an essential ingredient in a message authentication function, most
cryptographic hash functions, do not use keys at all. Therefore, we first need to define a
way to use cryptographic hash functions in conjunction with a key.

The most common approach for a keyed hash function is to input the key as part of the
data hashed by the function, e.g., hashing data, x, using key, k, is performed by applying
the hash function, F, to the concatenation of k and x. This approach is using the key
value as the IV of the encryption algorithm function. In our function procedure we use a
random and secret key value known only to the two communicated parties, and then
applying the necessary confusion and diffusion of our algorithm as shown below, which
add some significant analytical advantages. Notice that keyed hash functions are the
same as the original iterated hash function but with input key value. Reading the key
file is a process to create an array to hold the keyed hash value read from the predefined
file, and prepare it for four 32-bit result variables to be compatible with CHA blocks bit
size.

3.2.3 Initial States
Before hash computation begins, the working variables, State [0] to State [3], are
initialized with a predefined random four 32-bit words in order as shown:

State [0] = key [2] , State [1] = key [0], State [2] = key [3], State [3] = key [1];
These values are identical to the initial values for iterated hash function. These words
were obtained from random and secret values known only to the parties.

3.2.4 Read Data and Update Hash Computation
Message preparation should take place before hash computation begins. This
preparation consists of five steps: reading the input message, calculating the message
lengths, padding the message M if necessary, dividing the padded message P to the
requisite length (multiple of 128-bit), and finally calculating the number of, 128-bit
words, message blocks. If the length of the message M is an exact multiple of 128 bits,
no padding is added and the padded message P is identical to the original message M.
Otherwise, the complement of the last bit of the message shall be appended, with almost
zeroes, repeatedly until the resulting length reaches the next exact multiple of 128 bits,
of the block size. After a message has been prepared to the appropriate length, as
described above, it must be parsed into a number of 128-bit words before the hash
computation can begin.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 6

After the message has been prepared and the variables initialized, perform the following
computations for each 32-bit word in the prepared message:

- Apply the Compression Function, with Preliminary Intermediate Values
The intermediate values, T [0] to T [3], are initialized by combining the first four 32-bit
blocks of data with two different 32-bit blocks of the initialized states and other two
different 32-bit blocks of the random input keys to produce four intermediate 32-bit
words in order as shown in equation (1),

T [0] = data [0] + key [0], T [1] = data [1] + state [0], T [2] = data [2] + state [1],
T [3] = data [3] + key [3] (1)

- Rotation of the Intermediate value:
Generally, we do not want to use a cryptographic hash for a hash table, an algorithm
that's very fast by cryptographic standards is still excruciatingly slow by hash table
standards. Also, we want to ensure that every bit of the input will affect the result; one
easy way to do that is to use the non-linear rotation function. A rotation function is used
to rotate 32-bit input to produce 32-bit value from the previous step by certain rotation
factor, R. Note that, the rotation factor, R, can be one of the values (0, 1, 5, 7, 19, 22),
from Shannon.
- Calculate Multiplexing function value of the rotated Value:
One of the master functions of CHA algorithm design is the multiplexer function.
Choice of the output multiplexed bits is made based on non-linear multiplexer function
operation depending on the 32-bit selecting point, C. The output 32-bit is selected
depending on the two inputs 32 bit groups, A and B, to the multiplexer function, which
are changed each round.
- Compute Multiplication function for the multiplexed 32-bit to 64-bit values:

The multiplication function will extend a pair of 32-bit input values A and B in binary
notation into 64-bit values, as a product, which concatenate two output halves of 32-bit
values, Low and High, and then updates the new state values.

- Update Hash Computation and Finalize Hash Computations:
Finally, we reuse multiplexing and multiplying functions to update inter-state values
using various complex combinations.

These five steps constitute one round form specific number of iterations of the
algorithm. After repeating these steps for each word in the prepared message, the
resulting 128-bit message digest of the message M is State0 || State1 || State2 || State3,
Human-readable output is generated most significant byte first.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 7

Discussion: In a pure block cipher, the hash result variables, State0 to State3, would be
updated only once per block. However, doing that has been shown to be a serious flaw
in the CHA-128 design hash functions. Consequently, these variables are updated every
round iteration in the algorithms presented here.

4. Security Analysis and Performance Evaluation for CHA:

It is designed to be elegant design, large security margin, good general performance,
excellent efficiency in hardware implementations, and for its flexibility.

4.1 Security Analysis
In this section, we present the goals we have set for the security of CHA-128. These
claims result from the considerable safety margin taken with respect to most known
attacks. We do however realize that it is impossible to make non-speculative statements
on things unknown.

4.1.1 Designers’ statement on the absence of hidden weaknesses:
In spite of any analysis, doubts might remain regarding the presence of trapdoors
deliberately introduced in the standard or even published algorithm. Therefore we do
hereby declare that there are no hidden weaknesses inserted by us in the CHA primitive.

4.1.2 Designers’ statement of Not Known Idea:
 The main difficulty in cryptanalyzing CHA-128 comes from the fact that our design
choices are fairly different from those in the MD-Family and SHA-Family hash
functions. CHA-128 therefore provides diversity with respect to existing standards. The
attacker who tries to break CHA-128 should analyze the primitive algorithm function
structure where the difference ideas, which would make the attacks more difficult.

4.1.3 Design Confusion and Diffusion:
While combining the outputs from the three main core functions, orthogonal logic
operations are used to create confusion and diffusion [16] which adds to the security.
Partial collisions do not produce full collisions for same length messages. This property
ensures that attacks based on establishing and maintaining a collision in the Bijection
Selection data must fail.

4.1.4 Design Strict Avalanche Criteria:
There is a strong avalanche effect [17], in that each message, when an input is changed
slightly, the output changes significantly, during block iteration process.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 8

4.1.5 Design Output Expected Strength, Deferential Cryptanalysis:
Assume we take as hash result the value of any n-bit substring of the full CHA-128
output. The single step operation ensures that changing a small number of bits in the
message affects many bits during the various passes. Together with the strong
avalanche, it helps CHA-128 to resist differential attacks [18].
Moreover, it is infeasible to detect systematic correlations between any linear
combination of input bits and any linear combination of bits of the hash result. It is also
infeasible to predict what bits of the hash result will change value when certain input
bits are flipped, i.e. CHA-128 is resistant against differential attacks.

4.1.6 Pre-Image Resistance:
 The construction of the initial state values prevents meet-in-the-middle birthday attacks
that find preimage of the hash function [19].

4.1.7 Design Output Birthday Attack:
The birthday attack is an attack that can discover collisions in hashing algorithms. It is
based on the Birthday Paradox, which states that if there are 23 people in a room,
assuming that birthdays are distributed evenly over 365 days, with no leap years, the
odds are slightly greater than 50% that two will share the same birthday.
By using three non linear functions during each 128-bit block steps, it has been made
difficult to construct a differential characteristic with high probability. Also, the keying
of the CHA-128 design is irregular (rather than constant as for standard CBC) so the
application of some birthday paradox style attacks is prevented.

4.2 Performance Evaluation:

4.2.1 Efficiency estimates
Using the reference C implementation on a 1 GHz Pentium III platform, we observe that
many factors explain the observed performance. First, a 32-bit or 64-bit processor was
used to test a native 32-bit implementation; better results are expected by merely
running the speed measurement on Pentium processor. Second, it seems that the pipe
parallelism capabilities of the Pentium may be partially used; this may reflect an
optimization of the implementation of 32-bit arithmetic support by the C compiler, and
might be better by an assembler implementation. Third, there is no tables employed in
the reference implementation, are quite small, and the built-in processor cache must be
enough to hold the application, the data being hashed, and the hashing code at once,
thus increasing processing speed.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 9

4.2.2 Flexibility

CHA-128 inherits the flexibility of the special purpose functions constructions. It is
much more extendable than most modern hashing functions. Even though is not
specifically oriented toward any platform, it is rather efficient on many of them, its
structure favoring extensively single round execution of the component mappings. At
the same time, it does not require excessive storage space (either for code or for tables),
and can therefore be efficiently implemented in quite constrained environments like
smart cards. CHA can achieve higher performance if it is applied on modern computers
with larger processors cache memory. It does not use expensive or unusual instructions
that must be built in the processor. The mathematical simplicity of the primitive
resulting from the design algorithm tends to make processing speed faster. The instance
proposed for CHA-128 makes use of a single round for all security strengths. This cut
down implementation costs compared to hash function families making use of two (or
more) primitives, like the SHA-2 family.

4.2.3 Performance Evaluation comparisons
In this section we compare the performance of the public SHA and proposed CHA
algorithms on the basis of different parameters like message digest length, and block
size, as shown in Table-1. Implementations were written in high level language software
programming visual studio.net to test these hash Algorithms. For experiment, Intel Core
i5 2.40 Ghz, 4 GB of RAM and Window-7 Home Basic SP1, have used in which
performance data is collected.

Table (1): Timing Comparison between Proposed CHA, three SHA (SHA-160, SHA-
176 and SHA-192) algorithm for 15 KB file

Algorithms Hash Timing (in second) Message Digest

CHA-128 0.125
4B 2A 1D 3C 08 FF D3 4E
BB 32 FE 01 3C B6 36 20

SHA-160 0.791
D4 11 0A D3 B2 F6 2A 06
C8 0E 3A F1 1F A8 1B 8D
F5 48 66 E6

SHA-176 0.940
FB E4 B7 93 BA 05 02 FB
2E C2 10 D2 F6 4A 05 8B
0D 83 10 B7 2C C9

SHA-192 2.120
B3 23 75 FD 55 23 28 59
EB CD 79 0C CF 66 9A 20
6D 8B 39 30 16 49 59 3E

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 10

Table-1 is showing execution time comparison between CHA, and three SHA hash
functions designed by NSA (National Security Agency) which are the set of
cryptographic hash function. The first one is SHA-1 produces message digest that is of
160 bits long. Later in SHA-1 has been identified security flaws, namely that a possible
mathematical weakness might exist. This point out that stronger hash function would be
desirable. The second one is SHA-176 [20] that has more strength than the existing
SHA-160. The last hash function is SHA-192 [21] has been designed to satisfy the
different level of enhanced security and to resist the advanced SHA attacks.

4.3 Security Performance Trade-Off:
The problem of modeling and analyzing software architectures for cryptographic
systems is usually addressed through the introduction of sophisticated modeling
notations and powerful tools to solve such models and provide feedback to software
engineers. The increasing complexity of software systems creates large effort to jointly
analyze their non-functional attributes in order to identify potential tradeoffs among
them (e.g. increased availability can lead to performance degradation) [22].
From the previous performance and security results, our proposed design can in fact
provide the best tradeoff between security and performance properties.

5. Conclusions:

We observe that hash functions are in widespread use in information processing
applications more so than any other cryptographic topics, additionally there are a few
ideas of its internal structural diversity. This leads to the serious possibility of a single
point of failure in cryptographic security. Thus there is a requirement for new secure
and efficient hash design schemes, which motivated our proposal of internal F-functions
as a new class of hash algorithms. In this paper we have put forward a new hash
function called CHA-128 has been designed with improved security and reasonable
speed. CHA-128 is much more scalable than most modern hashing functions. Even
though is not specifically oriented toward any platform, it is rather efficient on many of
them. At the same time, it does not require excessive storage space (either for code or
for tables), and can therefore be efficiently implemented in quite constrained
environments like smart cards, although it can benefit from larger cache memory
available on modern processors to achieve higher performance. It does not use
expensive or unusual instructions that must be built in the processor. Also, it has an
acceptable hash length; which provides increased protection against birthday attacks.
Finally, as usual when proposing a new cryptographic algorithm design, we urge all
cryptographers, graduates, and interested people in this field to study the strength of
CHA-128, we will appreciate attacks, analysis and any other comments.

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 11

References:

[1] Mihir Bellare, Tadayoshi Kohno: Hash Function Balance and Its Impact on
Birthday Attacks. EUROCRYPT 2004: pp401–418, 2004.

[2] J.S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle–Damgård Revisited:
How to Construct a Hash Function. Advances in Cryptology – CRYPTO '05
Proceedings, Lecture Notes in Computer Science, Vol. 3621, Springer-Verlag, pp.
21–39, 2005.

[3] M.J.B. Robshaw, MD2, MD4, MD5, SHA and Other Hash Functions, Technical
Report TR-101, version 4.0, RSA Laboratories, 1995.

 [4] Helena Handschuh, “SHA-0, SHA-1, SHA-2 (Secure Hash Algorithm)”,
Encyclopedia of Cryptography and Security, pp 1190-1193, 2011.

[5] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - The Keccak reference
Submission to NIST (Round 3), 2011. http://keccak.noekeon.org/Keccak-
submission-3.pdf. Accessed 10/08/2013.

[6] Bart Preneel, Rene Govaerts, and Joos Vandewalle, “Hash functions based on
block ciphers: a synthetic approach”, Appeared in Advances in Cryptology {
CRYPTO 1993, Lecture Notes in Computer Science 773, D. R. Stinson (Ed.),
Springer-Verlag, pp. 368-378, 1993}, Springer-Verlag, 1993.

[7] Rivest, R.L.: The MD4 Message Digest Algorithm. In Menezes, A., Vanstone,
S.A., eds.: CRYPTO. Volume 537 of Lecture Notes in Computer Science.,
Springer PP 303–311, 1990.

[8] R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. M.I.T. Laboratory
for Computer Science and RSA Data Security, Inc., April 1992.

[9] H. Dobbertin, A. Bosselaers, Preneel, “RIPEMD-160, a strengthened version of
RIPEMD. Fast Software Encryption”, LNCS 1039, D. Gollmann, Ed., Springer-
Verlag, pp. 71-82, 1996.

[10] Christophe De Cannière, Christian Rechberger, “ Finding SHA-1 Characteristics:
General Results and Applications ”, Advances in Cryptology – ASIACRYPT
2006. Lecture Notes in Computer Science Volume 4284, 2006, pp 1-20.

[11] Florian Mendel, Tomislav Nad, Martin Schläffer, “Finding SHA-2
Characteristics: Searching through a Minefield of Contradictions” , Advances in
Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science Volume
7073, pp 288-307, 2011.

[12] Ralph C. Merkle, “A fast software one-way hash function”, Journal of Cryptology,
Volume 3, Issue 1, pp 43-58, 1990.

http://keccak.noekeon.org/Keccak-

Proceedings of the 9th ICEENG Conference, 27-29 May, 2014 EE083 - 12

[13] Gaoli Wang, “Collision Attack for the Hash Function Extended MD4”,
Information and Communications Security. Lecture Notes in Computer
Science Volume 7043, pp 228-241, 2011.

[14] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. “Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD”. Cryptology ePrint Archive,
Report 2004/199, 2004. http://eprint.iacr.org/2004/199. Accessed 10/08/2013.

[15] B. Preneel, “Collision resistance”, Encyclopedia of Cryptography and
Security, pp 221-222, 2011.

[16] Baris Coskun, Nasir Memon, “Confusion/Diffusion Capabilities of Some Robust
Hash Functions”, In Proceedings of the 40th Annual Conference on Information
Sciences and Systems {(CISS'06)} (March 2006).

[17] Rajeev Sobti, G.Geetha , “Cryptographic Hash Functions: A Review”, IJCSI
International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March
2012.

[18] Vincent Rijmen, Bart Preneel, “Improved Characteristics for Differential
Cryptanalysis of Hash Functions Based on Block Ciphers”, Fast Software
Encryption, LNCS 1008, B. Preneel Ed., Springer-Verlag, PP. 242-248, 1995.

[19] Rogaway, P.; Shrimpton, T. "Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage
Resistance, and Collision Resistance". Fast Software Encryption, Volume 11,
(2004) (Springer-Verlag), pp.371-388. Retrieved 17 November 2012.

[20] Piyush Garg1, Namita Tiwari,” Evolution of Sha-176 Algorithm”, IOSR Journal
of Computer Engineering (IOSRJCE), ISSN: 2278-0661 Volume 2, Issue 2, PP
18-22, (July-Aug. 2012).

[21] Thulasimani Lakshmanan1 and Madheswaran Muthusamy, “A Novel Secure Hash
Algorithm for Public Key Digital Signature Schemes ”, The International Arab
Journal of Information Technology, Vol. 9, No. 3, May 2012.

[22] Jindal, P., Singh, B.: Study And Performance Evaluation Of Security-Throughput
Tradeoff With Link Adaptive Encryption Scheme. ;CoRR abs / 1211.5080 (2012).

http://eprint.iacr.org/2004/199

