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Abstract:

In this paper, system identifications of an unmanned aerial vehicle (UAV) based on
inferred state space and multiple neural networks were presented. In this work an
optimization approach was used to conclude an inferred state space and the multiple
neural networks system identifications based on the genetic algorithms separately.  The
UAV is a multi-input multi-output (MIMO) nonlinear system. Models for such MIMO
system are expected to be adaptive to dynamic behavior and robust to environmental
variations. This task of accurate modeling has been achieved with multi-neural network
architecture in the most recent years. The presented work is focusing on an inferred state
space based system identification which is a new approach seldom used, but it is also
easier and more stable compared with the multi-network based system identification
during the modeling of dynamic behavior of nonlinear systems.  In other words the
number of inputs used in the genetic algorithm to obtain an inferred state space is almost
one third of the number of inputs needed to develop the multi-layer recurrent neural
network architecture to simulate the required dynamic behavior of a real model. The
neural network models are based on the autoregressive technique with linear and
nonlinear networks. The simulation results presented in this paper show the superiority
of the inferred state space model compared with the autoregressive technique based
multi-neural network.
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1. Helicopter Model

Helicopter dynamics obey the Newton-Euler equations for rigid body in translational
and rotational motions. The helicopter dynamics can be studied by employing lumped
parameter approach which presents that the helicopter model shown in Figure (1) as a
composition of following components; main rotor, tail rotor, fuselage, horizontal bar
and vertical bar. Figure (2) illustrates typical arrangement of component forces and
moments generated in helicopter simulation model, Table (1) illustrates Raptor 90
helicopter model specifications [1, 2].

Figure (1): Raptor 90 (15 cc Engine)

Forces equations:

(1)

(2)

(3)

Moment equations:

(4)

(5)

(6)

Kinematic equations:

(7)

(8)

(9)
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Table (1): Parameters of Raptor 90 helicopter for simulation model
Parameter Description

ρ = 1.225 kg/m3 Atmosphere density

m = 7.70 kg Helicopter mass

Ixx = 0.192 kg m2 Rolling moment of inertia

Iyy = 0.34 kg m2 Pitching moment of inertia

Izz = 0.280 kg m2 Yawing moment of inertia

Ωnom = 162 rad/s Nominal main rotor speed

RM = 0.775 m ain rotor radius

RCR = 0.370 m Stabilizer bar radius

CM = 0.058 m Main rotor chord

CCR = 0.06 m Stabilizer bar chord

aM = 5.5 rad-1 Main rotor blade  lift curve slope

 =0.024 Main rotor blade zero lift drag coefficient

 =0.00168 Main rotor max thrust coefficient

Iβ = 0.038 kg m2 Main rotor blade flapping inertia

RT = 0.13 m Tail rotor radius

CT = 0.029 m Tail rotor chord

aT = 5.0 rad-1 Tail rotor blade lift curve slope

 =0.024 Tail rotor blade zero lift drag coefficient

 =0.0922 ail rotor max thrust coefficient

nT = 4.66 Gear ratio of tail rotor to main rotor

nes = 9.0 Gear ratio of engine shaft to main rotor

= 0.1 rad Tail rotor pitch trim offset

SV= 0.012 m2 Effective vertical fin area

SH =0.01 m2 Effective horizontal fin area

= 2.0 rad-1 Vertical fin lift curve slope

= 3.0 rad-1 Horizontal tail lift curve slope

= 0.1 m2 Frontal fuselage drag area

= 0.22 m2 Side fuselage drag area

= 0.15 m2 Vertical fuselage drag area

hM = 0.235 m Main rotor hub height above CG

lM = 0.015 m Main rotor hub behind CG

lT = 0.91 m Tail rotor hub location behind CG

hT = 0.08 m Tail rotor height above CG

lH= 0.71 m Stabilizer location behind CG

kMR =0.3333 Amount of commanded swash plate tilt

kCR =1.1429 Geometry coefficient of the mechanical linkage of control rotor and swash plate
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Figure (2): Typical Arrangement of Component Forces and Moments Generation in
6-DOF Helicopter Simulation Model

The linearized matrices for hover condition (or low speed flight) excluding the control
rotor (Six DOF model eight states) are given in Table (2) and Table (3). Each column
and row is marked with the states and inputs that are being referred to the state space
model. Table (4) states the stable and unstable eigenvalues according to the different
modes for six DOF in hovering and low speed flight conditions. Figure (3) illustrates
the different poles on the corresponding Pole-Zero Map.

(10)

(11)

Table (2): Analytically obtained A matrix in hover with no control rotor

u w q θ v p φ r
u -0.0070825 0 0.00093895 -9.81 -0.0292 -0.0292 0 0
w 0 -0.8159 0 0 0 0 0 -0.12
q 0.0377 -0.2775 -0.6718 0 -0.28599 0.1558 0 0.265
θ 0 0 1 0 0 0 0 0
v 0.00093895 0 0.0144 0 -0.06808 0.122823 9.81 0.055
p 0.0094513 0 -0.2942 0 -0.1377 -1.286 0 0.19
φ 0 0 0 0 0 1 0 0
r 0 -1.5246 0 0 1.528 0.122 0 -5.1868

Table (3): Analytically obtained B matrix in hover with no control rotor

δCol δLon δLat δPed

u 5.2981 1.5591 -0.1816 0
w -128.777 0 0 0
q -72.0367 -8.3082 0.9678 9.07
θ 0 0 0 0
v -31.9088 0.0605 -0.5196 5.055
p -321.1883 1.8281 -15.6933 17.322
φ 0 0 0 0
r 178.2831 0 0 17.322
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Table (4): Eigenvalues and modes for 6-DOF in Hovering/Low Speed Flight Condition

Mode Eigenvalues Damping Frequency (rad/s)

Longitudinal Oscillation 0.169 ± 0.392i -0.395 0.427

Lateral Oscillation -0.0279 ± 0.765i 0.0365 0.765

Heave -0.68 ± 0.142i 0.979 0.695

Roll Subsidence -1.68 1 1.68

Yaw -5.28 1 5.28

Figure (3): Poles of Coupled Longitudinal and Lateral Motion for 6-DOF with no

Control Rotor

The algebraic state space matrices shown in Figure (4) are usually used to calculate all
the matrices elements that require all the aerodynamic coefficients and stability
derivative values. This tedious job will acquire a considerable number of hours though
the final error sometimes exceeds the acceptable limitations.  The final error is usually
due to many reasons such as (nonlinearities, approximations, uncertainties and
miscalculations) therefore to build up a practical model (state space model) it is
recommended to apply some methodology based on practical experiments results to
extract all the required state space elements.
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Figure (4): Algebraic State Space Matrices

2. Methodology of Inferring State Space Elements
It is not realistic to calculate all the state space elements analytically but it is
recommended to use these algebraic state space matrices only to roughly determine the
range of each element to ease the GA process to obtain proper solutions in less time.
Some of the state space elements are already known that would reduce the number of
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the total elements. The unknown elements ranges only should be roughly determined in
order to decrease the number of iterations needed to obtain an acceptable solution that
represents the most global minimum of the performance index (the minimum error
between the inferred and real state space values). Table 5 and Table 6 show the known
and unknown elements in matrix A and matrix B. After calculating the state space
elements ranges by using the proposed algebraic state space or by the analogy of some
similar model GA is applied to calculate the inferred state space elements as the
following procedure.

2.1 Using binary system coding

Coding： using 10-bit binary genes to express (A1, A2,………A26) and (B1,
B2,………B18) . For example (A1) from (0)0000000000 , to is (1023)1111111111 .Then string

A2....etc. till B18 to 440-bit binary cluster. 00001000101110111000...........0000110111:x

expresses a chromosome， the former 10-bit express (A1), the second portion express
(A2) and the third one express the (A3)…etc.

Decoding： Cut one string of 440-bit binary string to 44 10-bit binary string， then
converts them to decimal system values (A1, A2,………A26) and (B1, B2,………B18),
[3, 4, 5, 6].

Table (5): Analytically obtained A matrix in hover with no control rotor

u w q θ v p φ r
u A1 0 A2 -9.81 A3 A4 0 0
w 0 A5 0 0 0 0 0 A6
q A7 A8 A9 0 A10 A11 0 A12
θ 0 0 1 0 0 0 0 0
v A13 0 A14 0 A15 A16 9.81 A17
p A18 0 A19 0 A20 A21 0 A22
φ 0 0 0 0 0 1 0 0
r 0 A23 0 0 A24 A25 0 A26

Table (6): Analytically obtained B matrix in hover with no control rotor

δCol δLon δLat δPed

u B1 B2 B3 0
w B4 0 0 0
q B5 B6 B7 B8
θ 0 0 0 0
v B9 B10 B11 B12
p B13 B14 B15 B16
φ 0 0 0 0
r B17 0 0 B18

2.2 Evaluation of fitness function
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Fitness function is the main criterion of the GA algorithm, as it represents how much the
system is optimum and stable. The following equation describes the relation between
the fitness function and the performance index as shown in the following equation.

(11)

In the above equation is the actual system output while is the predicted output
(Inferred State Space), gk is the corresponding attitude weight that depends on the
priorities of this attitude. k is attitude notation corresponding to the states in the state
space matrix A. Therefore the fitness function could be written as the inverse of the
performance index of the inferred state space performance as shown in the following
equations. [9, 10, 11]

 F(A1, A2,………A26, B1, B2,………B18 ) =(PI2)
-1 (12)

2.3 Design operators

Proportion selection operator， single point crossover operator， basic bit mutation
operator.

2. 4 Parameters of GA

Population size is 200=M , generation 100=G , crossover probability 0.60c =P ， mutation

probability 0.10m =P  and value code =10 bits. Adopting the above steps, after 100

iterations in one round, reasonable values could be obtained. Figure (5) shows that the
performance index of the inferred state space performance compared with the actual
state space model could reach less than 1000 which is adequately an acceptable number.

Figure (5): Performance Index for Inferred State Space Compared with the Actual
3-Recurrent Neural Network Based System Identification
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Different neural network structures and training methods were conducted for modeling
the nonlinear dynamics of the UAV. The ARX technique proved to be most suitable for
this purpose [7]. In the autoregressive neural network model the network retains
information about the previous outputs and inputs to predict the next output. This
provides equivalent retention capabilities of the dynamics of the UAV by the network.
The predicted output of a nonlinear model can be obtained as shown in the following
equation. [8]

(13)

Where θ is the coefficient matrix which gives the influence of past outputs (a.......ana)
and influence of past inputs (b1……b nb) on each of the subsequent outputs. The
nonlinear function is defined by g, the y and u terms correspond to past outputs and past
inputs respectively. The above equation can be simplified as

     (14)

     (15)

 (16)

Here φ is the matrix of past inputs and outputs called the regressor and it is available
from memory. To obtain the coefficients θ, many assumptions and detailed knowledge
of the plant are necessary. Hence for a dynamic nonlinear system such as the UAV it
may not be feasible. This can be avoided by using black-box methods such as the neural
networks. The output of a two layered neural network is given as:

(17)

In the above equation F and G are the activation functions, l1 and l2 the number of
neurons in the two layers, b1j0 and b2j0 are the bias to the two layers and xk is the
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network input. In most of the cases the nonlinearities are best represented by the
hyperbolic tangent function as the activation function G and a linear relation F. W1jk

and W2ij are the weights from the hidden layer and the output layer respectively. These
weights correspond to the θ matrix. Hence the problem of obtaining the best prediction
depends on the network structure adapted and the training method used. Iterative
training is performed to minimize an error function using the genetic algorithms. The
goal of the training is to obtain the most suitable values of weights for the closest
possible prediction output through repetitive iterations. The GA method works on the
principle of minimizing the mean squared error between the actual output of the system
and the predicted output of the network. The summation of the mean square error of
each subsequent attitude PI1 (performance index) should be minimized by applying GA.

3.1 Using binary system coding

Coding： using 20-bit binary genes to express (W1, W2,………W140) and (b1,
b2,………b13). For example (W1) from (0)00000000000000000000 , is

(1048575)11111111111111111111 .Then string W2....etc. till b13 to 3060-bit binary cluster.

00001000101110111000...........0000110111:x  expresses a chromosome， the former 20-bit

express (W1), the second portion express (W2) and the third one express the (W3)…etc.

Decoding： Cut one string of 3060-bit binary string to 306 20-bit binary string， then
converts them to decimal system values (W1, W2,………W140) and (b1, b2,………b13) [3,
4].

3.2 Evaluation of fitness function

Fitness function is the main criterion of the GA algorithm, as it represents how much the
system is optimum and stable. The following equation describes the relation between
the fitness function and the performance index as shown in the following equation.

(18)

In the above equation is the actual system output while is the predicted output

(Recurrent Neural Network), gk is the corresponding attitude weight that depends on the
priorities of this attitude. k is the attitude notation in the state space matrix A. therefore
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the fitness function could be written as the inverse of the performance index of the
recurrent neural network performance as shown in the following equation.

 F(W1, W2,………W140, b1, b2,………b13) =(PI1)
-1 (19)

3. 3 Design operators

Proportion selection operator， single point crossover operator， basic bit mutation
operator.

3. 4 Parameters of GA

Population size is 200=M , generation 6000=G at least, crossover probability
0.60c =P ， mutation probability 0.10m =P  and cluster length =20 bits. Adopting the above

steps, consequently after 6000 steps iterations in five rounds a reasonable network
performance could be obtained compared with the actual system as shown in Table (7).

Table (7): Five Iterative Rounds for Weight Calculation

Round no. Adapted Weight Range ( multiplied by the best
weights from the previous process)

PI1

1 Predefined Weight Range 23000
2 The Best Weights in round (1) *0.3 19500
3 The Best Weights in round (2) *0.6 12900
4 The Best Weights in round (3) *0.9 6000
5 The Best Weights in round (4) *0.3 5100
6 The Best Weights in round (5) *0.6 4800

In order to optimize the proposed recurrent neural network weights to get a reasonable
performance of the network the number of generations must exceed 5000 with 200
population size at least and 20 bits cluster length. This enormous number of iterations
would result in a problem during the execution of the genetic algorithm code. Therefore
it is recommended to divide this large generation number into 5 or 6 rounds while
changing the weight limitations in each round in accordance with the previous best
values of the network weights and biases. Performing those rounds mentioned in Table
(7) the performance index could be reduced to about 4800 as shown in Figure (6)
through Figure (10) which is about five times the final performance index of the
inferred state space.
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Figure (6): Performance Index in Round (1) Figure (7): Performance Index in Round (2)

Figure (8): Performance Index in Round (3) Figure (9): Performance Index in Round (4)

Figure (10): Performance Index in Round (5)

Using iterative rounds with adapting the weights ranges in each round will allow a
progressive searching for the global minimum instead of the local one. Figure (11)
illustrates the searching process from some local minimum to a next better one until
reaching the global minimum or at least the closest value to it in the neighborhood by
changing the weights limitations in each round in the GA.
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Figure (11): Looking for the Global Minimum by Using Adaptive Genetic Algorithm

4. System Evaluation

4.1 Evaluation Criteria

Figure (12) shows the performance index for each proposed systems (inferred state
space and recurrent neural network). PI1 is the performance index that measures the
performance of the proposed recurrent neural network performance compared with the
actual model. PI2 is the performance index that measures the proposed inferred state
space performance compared with the actual state space model. Both systems were
examined and measured using an adequate random input from an arbitrary signal
generator. A Simulink model was implemented to obtain these performance indexes
with respect to time as shown in Figure (13).

Figure (12): Performance Index for both NN and SS Based System Identifications
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Figure (13): Simulink Model for Calculating the Performance Indexes for both
NN and SS models
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Figure (14) shows the performance index for inferred state space and neural network
based system identifications describing the sharp increase in the performance index of
the neural network based system identification relative to the performance index of the
inferred state space system identification. Therefore the inferred state space based
system identification is the closest proposed model that can simulate the actual
performance of the nonlinear model with an acceptable error.

Figure (14): Performance Indexes for both NN and SS models with respect to the Actual
Model

4.2 System Performance

Figure (15) to Figure (22) illustrate the different attitudes for both inferred state space
and neural network system identifications for arbitrary combined sinusoidal input
signals. These figures show an acceptable performance of the inferred state space based
system identification compared with the neural network based system identification
with respect to the actual model. Figure (23) to Figure (26) present the dynamic
behavior of both inferred and actual state space of unmanned helicopter model
integrated with PID controller. The dynamic response shows that the inferred state space
model has an acceptable performance according to a unit step command relative to the
actual model.



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE223 - 16

Figure (15): Forward Speed for Neural Network, Actual and Inferred State Space
models

Figure (16): Side Speed for Neural Network, Actual and Inferred State Space models

Figure (17): Vertical Speed for Neural Network, Actual and Inferred State Space
Models
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Figure (18): Elevation Angle for Neural Network, Actual and Inferred State Space
models

Figure (19): Bank Angle for Neural Network, Actual and Inferred State Space models

Figure (20): Pitch Rate Speed for Neural Network, Actual and Inferred State Space
models
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Figure (21): Roll Rate for Neural Network, Actual and Inferred State Space models

Figure (22): Yaw Rate for Neural Network, Actual and Inferred State Space models

Figure (23): Forward Speed Performance due to Unit Step Command Using PID
Controller
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Figure (24): Vertical Speed Performance due to Unit Step Command Using PID
Controller

Figure (25): Bank Angle Performance due to Unit Step Command Using PID
Controller

Figure (26): Yaw Rate Performance due to Unit Step Command Using PID Controller
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Figure (27) shows the dynamic poles for the proposed system identification (inferred
state space) and for the actual one. It is one of the methods used to evaluate the
proposed system identification (state space based system identification) relative to the
actual one. For precise measuring technique it is recommended to calculate the relative
margin between the proposed system and the actual model poles instead of calculating
the absolute margin. This method would present a better expression for the degree of
closeness of the proposed model to the actual one as shown in the following
Figure (27).

Figure (27): Actual and Inferred State Space Poles

5. Conclusion

In this work it is obvious to conclude that the system identification based on an inferred
state space model gives better performance than the neural network based model
according to the performance index for each one. Moreover the computation time to
obtain the inferred state space elements is lesser than to obtain the neural network
weights. The computation time needed to calculate the recurrent neural network
weights is considerably high due to the large number of the weights and biases to
establish multi-layer recurrent neural network RNN. As the second objective in this
work is to minimize the performance index of the inferred state space ISS, there might
be some different combinations give approximately the same behavior of the real
system, so it is recommended to increase the time interval of calculating the
performance index besides increasing the number of the generations of the genetic
algorithm with a reasonable number of cluster bits to reach to the closest combination
of the inferred state space elements to the actual state space elements that could
simulate the true model with acceptable performance.
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