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Abstract:

The principal objective of applying the Hidden Markov Model (HMM) in Radar
System Identification (RSI) is to  show that the recognition performance of a HMM
exceeds that of the conventional methods such as cross-correlation. An important
offshoot of this research is to provide a method for choosing the optimal model
parameters for an actual radar signal so that a library of HMMs can be created and
used for practical EW tasks. Therefore, optimal threshold settings between competing
HMMs should be investigated to improve overall recognition performance. In this
paper, a new method for predicting the false recognition rates and deriving optimal
decision regions between competing HMMs that model the dynamic behavior of the
radars stored in the threat library of the Electronic Warfare (EW) is proposed. The
proposed method uses only the prior pulse repetition interval (PRI) statistics of a
known radar and template matching which can lead to a qualitative understanding
into radar correlation. Moreover, the paper investigates the idea of a threshold setting
so that the receiver can have a reject option and decide that an observation sequence
does not belong to any of the HMMs in its library. Computer simulations are
performed through the paper to validate the obtained theoretical analysis.

Keywords:
Hidden Markov Model (HMM), Radar System Identification (RSI), Pulse Repetition
Interval (PRI).

1. Introduction:

In [1], [2], it is assumed that any pulsed radar observation sequence necessarily
belong to one of the HMMs in the threat library of the Electronic Warfare (EW)
system. Unfortunately this is not a practical assumption because there will be
invariably unknown foreign signals in the environment. It is, therefore, required that a
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decision on the signal source also includes the possibility of classifying it as
unidentifiable [3]. In other words, a reject option must be included if the respective
recognition probabilities of all the HMMs fall below a given threshold. This idea is
analogous to a HMM that can not recognize a spoken word or phoneme in speech
recognition. This paper, investigates first the decision threshold for observation
sequences generated by HMMs in the threat library. Afterwards, a threshold will be
discussed for foreign sequences.

A search for analytic method for determining an optimum decision threshold of a
given HMM is difficult because there is no simple analytic probability density
function (PDF) for a HMM. Ways to overcome this problem is proposed in this
paper. The paper is organized as follows: Section 2 will introduce the idea of a
distance vector for pseudo-random sources and show that it is possible to use this
vector as a method for analytically calculating a probability of error (false
recognition) for a given HMM. Section 3 will follow the method used in [4] in an
effort to show that any prescribed threshold will have to be dependent on the HMM
being used. That is there is no optimal universal threshold for all HMMs within a
given threat library. Section 4 presents the application of the proposed method to
obtain a decision threshold for unknown signals. Finally, Section 5 summarizes the
main conclusions of the paper.

2. Pseudo-Random Source Distance Vector:

Because we are only using the PRI of the received signal, it is difficult to extract an
extensive information about the source. The parameters of a HMM we use to model
the source work well as long as the observed sequence is not too corrupted and not
too short. How corrupted and how short an observation depend not only on the
correct model's parameters, but also on those competing HMMs in the threat library.
Presumably it would be advantageous to know exactly how long a certain observation
sequence must be before there is little or no possibility of an incorrect model
obtaining the highest recognition probability since this could be a cut-off length. Any
received signal shorter than this length would automatically be classified as
"unknown" or rejected since it has a high likelihood of being erroneously classified.
In addition, knowing how corrupted a sequence can be before false recognition
begins to occur could aid in deciding whether to reject the sequence or not.
Unfortunately, it is not possible for a receiver to determine what the error level of an
observation sequence is. In any event, the false recognition rate of a particular HMM
in a threat library is a function of its parameters A, B, the parameters of every other
competing model, the length of the observation sequence, and the number of errors in
a sequence. All these variables make it extremely difficult to predict a false
recognition rate and thus an optimal decision threshold for a HMM.
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The idea of distance vector for a pseudo-random source attempts to simplify the
problem by determining a threshold that is independent of the HMM parameters and
concentrates solely on the source's prior PRI statistics. The only variables we now
need to concern ourselves with are the length of the observation sequence and the
characteristics of the competing models. In addition, it is assumed that there are no
errors in the observation sequence.

The distance vector of a pseudo-random source is defined as a vector containing the
expected values of all possible transitions per word from time t to t+T. For example
take T=1 so that from time t to t+1 there are the following four 2-symbol transitions:

Table 1: 2-Symbol Transitions

Received Symbols

Time=t Time=t+1

0 0
0 1
1 0
1 1

It is possible for these signal transitions to occur within a given word (intra-word
transition) or between two different words (inter-word transition). By calculating the
expected value of each transition per word, it is possible to define a distance vector d,
that can be used to find the mean squared Euclidian distance between two different
pseudo-random sources.

Take for example, the following artificial radar (radar 4) containing two equiprobable
words. Word 1: [0 1] with probability 0.5 and Word 2: [0 0 1] with probability 0.5
 So that the conceivable generated sequence could be:01 001 001 01 001

The notation  1, tt ooE  will be used to define the expected value of going from
observed symbol ot at time t to the next symbol ot+1 at time t+1 per word. Therefore,
E[0 , 0] can be found by summing all possible ways in which '0' can be followed by
another '0' multiplied by the probability of such an event happening. Here, the only

way this event can occur is within word 2 and so  
2

1
1

2

1
10,0 E  (number of

occurrences of the event   probability of the word   probability of going from
symbol to  to 1to ). The event '0' followed by a '1' can occur within both words so

  .11
2

1
11

2

1
11,0 






 






 E  The event '1' followed by a '0' occurs only during

inter-word transitions so the probability becomes the joint probability of being in the
first word and going to the second word. Since these events are statistically
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independent, the joint probability simply becomes the product of the two word
probabilities. There are four possible ways of this event occurring: first word back to
the first word , the first word back to the second word , the second word back to the
second word , the second word back to the first word. Thus,

  11
2

1

2

1
40,1 






 E . Finally, there is no way for a '1' to be followed by

another '1' so   01,1 E .
It is now possible to define the radar's distance vectors as

d4         1,10,11,00,0 EEEE = 0115.0 (1)

The distance vector for the second source (radar 3) is found to be
d3  625.0125.1125.1375.0  and the total square distance between these two is
defined as:

 



4

1

2

34

2

43
i

ii xxd (2)

The square root of this distance is found to be 0.6614(see Appendix A, B).

This value, 0.6614 is the average distance between these two radars for one word
including the transition to the next word. The average distance will increase linearly
with this value as the number of words increases. Obviously, the greater the distance
the more different the two sequences will be and thus, the less likely they will be
confused as having originated from the wrong source. This is equivalent to the false
alarm rate being low for long test sequences and being high for short ones. Figure 1
shows the actual and expected distance between these two radars as the number of
words increases. Note that there are no errors in both sequences. The distance vectors
for both radars are computed by counting the number of 2-symbol transitions that
occur in each sequence divided by the number of the words in the sequence. The
Euclidian distance is then calculated by taking the square root of equation (2).
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Figure (1).  Expected and actual euclidian distance between radar 3 and radar 4

Although the actual distance as a function of words may appear erratic, if it is
averaged over 50 independent trials (50 different sequences generated) for every
sequence length, it converges to the expected distance as shown in Figure 2
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Figure(2): Averaged euclidean distance between radar 3 and radar 4

In theory, increasing the value of T would provide more information about the source.
That is, knowing the number of expected transitions from time t to t+10 would
certainly yield a more specific distance vector than the 2-symbol transition vector
used previously. Unfortunately, the vector would become increasingly sparse and its
entries would become increasingly small making it is difficult to accurately calculate
the source's theoretical distance vector. For this reason it was decided to use distance
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vector with T=2 (3-symbol transitions implying an 8-component distance vector).

2.1. Distance Vector as Probability Distributions:

If we normalize the distance vector described in Section 2, then it will be possible to
obtain a PDF of the pseudo-random source. More precisely,

 




N

i
i

j

jj

d

d
PwP

1

(3)

where  nwww .............., 21  is the set of all possible 2-symbol transitions that can
occur and jd  is the thj  index of the distance vector. For example if T=1 then we

would have the 4-component distribution vector shown in equation 1
    ,........1,0,0,0 21 EwEw  . The probability that we receive a '0' followed by another

'0' in this case would be 2.0
0115.0

5.0



 .

2.2 Mean Squared Error (MSE) Distribution:

The mean squared error (MSE) between the received and theoretical pseudo-random
source's PDF can be shown to follow one of two possible distributions depending on
whether the received probability vector belongs to a given theoretical probability
vector or not. For example, if the received probability vector is of the form

 nreceived pppp .......,........., 21  and we know that it originated from radar A then the
probability distribution of the MSE between the received vector and the theoretical
vector for radar A will follow different distribution from other competing theoretical
vectors. This will become clearer in the following pages. Most of the theory
presented in equations 4 through 15 as well as 18 and 19 has either been taken from
[5] or [6] define MSE as:














  



n

i
iiMSE ppEdMSE

1

2
2

                                         =










 







n

i
iiii ppEppE

1

22 2

                                             =





























n

i
iii pEpp

1

2

var (4)

Where


ip is the received probability of event i occurring and ip is the theoretical
(predetermined) probability. If all of our received probability are unbiased
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ii ppE 



 

i , and 






ii pvar2  then, the MSE simply becomes





n

i
iMSE nd

1

222  (5)

In the special case where the n estimates all have the same variance 2 .

Relating this back to the probability vector, each, of the


ip corresponds to the
thi component of the received probability vector (obtained from the observation

sequence). It will be shown that these components will tend to a normal distribution
with mean i  and variance 2 . Note that n refers to the number of components in the
probability vector while m is the number of words in the observation sequence.

Define the normalized sum (called the sample mean) as





m

i
iX

m
Y

1

1
(6)

Where iX , i=1,2,3,……m are statistically independent and identically distributed
random variables. The mean of Y is [7 pp. 56-57]

       XE
m

XmE
XE

m
YE

m

i
i  

1

1
(7)

and the variance of Y is

     
mm

Xm
X

m
Y xi

m

i
i

2

2
1

2

var
var

1
var


 



(8)

which implies that the variance associated with our estimate,


p (shown as X in

equations 6 to 8), decreases as
m

1
 where m is the number of received words. This, in

turn, means that the MSE will also decrease as the number of samples gets larger or,
equivalently as the observation sequence gets longer.
With the above theory, we can say the following related to the 3-symbol transition
probability vector (n = 8).

1- For the proper model (the theoretical and the received probability vectors
originate from the same source), the MSE between them will approach zero as
the number of words (samples), m, tends to infinity.

2- For all other models the MSE will approach the bias of the model as compared
to the proper model as the number of words (samples), m, tends to infinity.

The second statement is more readily understood if we write it mathematically.

2

22 
















pEpnndMSE 

22  nn  (9)
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where we have assumed that the n observations are independent and identically

distributed (i. i. d) and we have denoted the bias term
2


















ii pEp  as 2  .

Now, as shown in equation (8), as the number of words increases, the variance

inversely decreases as
m

1 . Therefore, equation (9) becomes

22lim ndMSEm



(10)

It is now possible to determine the probability distribution of the MSE for the proper
and competing models. Assuming the eight components

  




 



8,.........3,2,1, ipwP ii  of the distribution vector are independent and normally

distributed with mean 8...,.........2,1, ii  and variance 2

x  (from the central limit
theorem) then we define the first transformation

iii ppY


 8.....,.........2,1i Rpi  (11)

where ip  and


ip are the theoretical and received values for the thi  component of the
given probability vector respectively. Note that the expected value of this
transformation is equal to zero for the proper model and l  for the thl  model. The
second transformation is defined as





n

i
iYZ

1

2 (12)

The combination of these two transformations is equivalent to the MSE calculation
shown in equation (4). That is, Z is equivalent to 2

MSEd .
If we are dealing with the proper model then it can be shown that [6, pp41-44] Z is a
central Chi-Square distribution with n degrees of freedom and has the following first
two moments:

  2

ynZE 

  42var ynZ 
(13)

Otherwise, if it is a competing model, Z is a non-central Chi-Square distribution with
n degrees of freedom and the first two moments



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EEOOO -1

9/26

  22 SnZE y  
  224 42var SnZ yy  

(14)

where 2S , the non-centrality parameter, is defined by





n

i
iS

1

22  (15)

The probability that the MSE of a competing model is smaller than that of proper
model, a false recognition can be defined in terms of the log likelihood ratio,  Z for
equal prior probabilities and uniform costs as:

       0logloglog  ZPZPZPP competingproper  (16)

where  Z  is defined as
 
 ZP

ZP

H

H

1

0 (17)

with  ZPH0
 representing the MSE probability conditioned on the proper model and

 ZPH1
 is the MSE distribution conditioned on the competing model. This is actually a

binary hypothesis test with 0H  and 1H  being the following two guesses:

0H : Received vector belong to radar A

1H : Received vector does not belong to radar A
Assuming the received signal originates from radar A, the probability distribution of
MSE conditioned on the event 0H  is [6]




















2
2

)(
2

2
1

2 2

0 n
eZ

ZP
n

n

Z

Zn

H

Z





(18)

where, n is the number of i.i.d Gaussian random variables ( the components of the
normalized distance vector) and  x  is the gamma function. This is the Chi-Square
distribution with n degrees of freedom.
The distribution of the MSE conditioned on 1H  is given as

 
   






















21
2

2
4

2

22

2

2

1 2

1

Z

n

ZS
n

Z

H

S
ZIe

S

Z
ZP Z


 (19)

where  xI  is the th -order modified Bessel function of the first kind.
After some algebraic manipulations, we get the following log-likelihood ratio test
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n

Sn
SLog
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ZILogZLog

n
(20)

where we would choose H0 if the left hand side were greater than the threshold, 1 ,
H1 if it were less than 1 , and either hypothesis could be chosen if there were equality
between the two sides.
Several simulations were run to verify the many assumptions that have been made
and the probability properties that have been used in the preceding pages regarding
the distribution and independence of the eight components of the probability
distribution vector. Figure 3 shows the distribution of 3mod

1

elp , that is the probability
distribution of the first component  0,0,0p  for model 3. Note that the theoretical
value for this model and component is 0.0385. Complete tables of the theoretical
distribution vectors are provided in Appendix C.
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Figure (3): Normalized distribution of  0,0,0p
Figure 3 is the result of 500 independent runs using radar 3 as a test sequence with a
200-word length. In this case it has a mean of 0.0383 and a variance of 5107103.3  .
Figure 4 shows the average value of the same component after being translated by



 111 ppY . The translated random variable now has a mean of 0.0002 with the

same variance as before ( 5107103.3  ). If we look at the translated distribution using
a competing model (the theoretical vector for radar 5) we see the mean of the
distribution as the difference between the theoretical components of the two models.
Note that in Figure 5, the mean is -0.0688 which corresponds to the difference in
the expected values of the first components for radar 3 and radar 5. More specifically,

   0385.00,0,03 pE and    1701.00,0,05 pE . The difference is
0686.01071.00385.0  .
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Figure (4): Translated distribution for proper model
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Figure (5): Translated distribution for the competing model

Now, if we look at the transformation 



n

i
iYZ

1

2  for the proper model (radar 3), we

get the following plot. Recall that we are expecting a Chi-Square distribution with
mean equal to 2

yn  and a variance 42 yn
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Figure (6): MSE Distribution for proper model

The calculated (output) values from this simulation for the mean and variance of
Figure 6 are:

 
  7-

3

109.4953

101



 

ZVar

ZE

Assuming that all eight components are identically distributed (same variance) we get
the following output mean and variance for Z.

   5

3

2 107103.30,0,0  pVary  as was shown before which implies that we get

for Z
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  8-2542
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



If, instead, we use the output variances for each of the eight components we get the
following:

001.010
0644.01004.0

2736.00908.00995.02866.00930.00371.0
3
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that now we get for the mean and the variance of Z
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which are much closer to the actual output values of 0.001 and -7109.4953  for the
mean and variance respectively. This demonstrates that the eight components are not
identically distributed, but do have, however, very similar variances. Although a
second simulation will not produce the exact same results (due to the random nature
of signals), it would still yield similar conclusions.

Figure 7 shows the distribution of the MSE for a competing model which, in this
case, is radar1. The theoretical bias between models 1 and 3 is calculated to be
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0.0286.
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Figure (7): MSE Distribution for competing model

The general conclusion is that it is possible to derive an analytical expression for the
probability of error (false recognition) between two pseudo-random sources one
being the correct model and one being a competitor-based only on a priori PRI
statistics of each source.

2.3 False Recognition Probability Example:

Figure 8 shows the theoretical MSE distribution of both central and non-central Chi-
Square distribution with 8n  degrees of freedom where the non-centrality
parameter, 2S , is equal to 2 and the variance, 2  is equal to 0.25.
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Figure (8): Central and Non-Central Chi-Square probability
distribution

Figure 9 shows the log likelihood function,  Zlog . Note that the zero-crossing in
Figure 9 occurs at the same MSE value when the two curves intersect in Figure 8.
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Figure (9) : Log-Likelihood function

Figure 10 shows how the probability of the false recognition (choosing 1H  when 0H
is true) increases as the variance (and, accordingly the MSE) increases. The
probability of false recognition can be described mathematically as

P (choose 1H  | 0H  is true)  





dzZPH0
(21)

where   is chosen as the MSE value when the log likelihood function crosses zero.
The false recognition probability was calculated using MATLAB where equations 18
and 19 were set to equal each other in order to determine the threshold and equation
21 was used for the actual probability calculations.
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Figure (10): Probability of false recognition

As would be expected, the false recognition rate goes up as the variance in our MSE
estimate increases. The variance increases as fewer samples (words) are received
which explains why short sequences produce high false recognition rates than do long
ones.
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2.4 Simulation Results:

This subsection compares the theoretical probability of false recognition to actual
simulation results. The simulation uses radar 3 as the correct model and radar 1 as a

competitor. The theoretical non-centrality parameter, 





1

22

k
kS   between these

radars is 0.0286 as indicated in Appendix C. Figure 11 illustrates how the MSE
converges to 0 for the proper model (radar 3) and towards the non-centrality
parameter for radar 1 as the observation sequence increases in length.
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Figure (11): MSE VS Test Sequence Length (Radar 3 Being the
Correct Model)

Figure 12 shows how the variance of the MSE estimate decreases as a function of the
observation sequence length.
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Figure (12): MSE variance Vs test sequence length.(radar 3 being
the correct model)

Figure 13 shows the relationship between MSE estimate of the proper model and the
variance of this estimate. This plot is generated from 500 different test sequences
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ranging in length from 1 to 50 words. The MSE values shown are those between the
received and theoretical vectors from radar 3. They are the average values for the
MSE calculated from each of the 500 test sequences of a given length while the MSE
variance is the variance of all the values. This plot, in essence combines Figure 11
and  Figure 12. Recall that, theoretically, the MSE should equal 8 times the MSE
variance (equation 5)
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Figure (13): MSE Vs variance of estimate

Figure 14 compares the theoretical calculation for the false recognition probability to
the simulation results. The actual false recognition probability is calculated by
counting the number of times the MSE between the received and correct probability
vectors is not the smallest (a competing model has a smaller MSE) as a function of
the observation sequence length, and, correspondingly, the MSE variance   (equation
8). The theoretical curve is computed using MATLAB in a similar manner to Figure
10
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Figure (14): Theoretical and Simulation Comparison of the
Probability of False Recognition.
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Although the theoretical curve is only a coarse approximation for the actual false
recognition probabilities, it does still offer an insight into the relationship between the
MSE and false recognition rate. The curve could probably seem to more closely
resemble the actual data by lowering the value of 2S , but 0.0286 is already very close

to the lower bound ability of the MATLAB program to solve the equation  




dzZPH 0

since such small variances are involved this could, in turn, lead to round-off error in
the calculations.

3. Gaussian Distribution of HMM Recognition Probability:

Table 2 shows the actual average recognition probability of 8 HMMs for 1500
different test sequences each containing 20 words. The rows correspond to the radar
that was used to generate the observation sequence while the columns indicate the
recognition probability of each HMM for that sequence. Note that HMM1 is the
trained model for radar 1, HMM2 is the trained model for radar 2 and so on.

Table 2: Log Recognition Probability for 8 Radars
Threat Library

Sequence
source

HMM1 HMM2 HMM3 HMM4 HMM5 HMM6 HMM7 HMM8

Radar 1 -11.2406 -65.2379 -44.8571 -50.0822 -69.4772 -87.7990 -73.6274 -91.4689
Radar 2 -51.8197 -12.0434 -56.5937 -72.6261 -71.1339 -86.6473 -59.8420 -123.510
Radar 3 -39.7264 -77.3997 -10.0861 -56.8642 -61.8544 -79.1460 -74.4219 -106.045
Radar 4 -11.8935 -56.2459 -35.0319 -6.0227 -49.6079 -56.3802 -50.9857 -60.5805
Radar 5 -87.4821 -160.722 -87.2430 -114.021 -12.0473 -161.194 -147.275 -192.637
Radar 6 -128.781 -154.973 -105.834 -122.378 -75.4119 -5.5229 -33.9215 -68.5426
Radar 7 -74.6023 -99.0511 -77.1047 -69.0025 -61.3744 -55.1038 -10.0957 -71.6117
Radar 8 -184.468 -186.212 -178.309 -175.970 -171.123 -86.8578 -84.7649 -13.5782

Notice how highest recognition probability per row occurs when the HMM used is
the same as the radar source generating the sequence. The table, however, is not
symmetric. As an example, the recognition probability (-44.8571) is computed by
HMM3 with radar 1 generating the sequence is not the same as the recognition
probability (-39.7264) is computed by HMM1 for radar 3. In other words, HMM1 is
more likely to falsely classify a signal from radar 3 than HMM3 is likely to
incorrectly classify a signal from radar 1. Table 3 shows the relative difference in
recognition probabilities between all 8 competing models.
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Table 3: Relative log recognition probabilities
Threat Library

Sequence
source

HMM1 HMM2 HMM3 HMM4 HMM5 HMM6 HMM7 HMM8

Radar 1 0 53.9973 33.6165 38.8416 58.2366 76.5584 62.3868 80.2283

Radar 2 39.7763 0 44.5503 60.5827 59.0905 74.6039 47.7986 111.4667

Radar 3 29.6403 67.3136 0 46.7781 51.7683 69.0599 64.3358 95.9589

Radar 4 5.8708 50.2232 29.0092 0 43.58.52 50.3575 44.9636 54.5578

Radar 5 75.4348 148.675 75.1957 101.974 0 149.147 135.228 180.590

Radar 6 123.2581 149.450 100.311 116.855 69.8890 0 28.3986 63.0197

Radar 7 64.5066 88.9554 67.0090 58.9068 51.2787 45.0081 0 61.5160

Radar 8 170.8898 172.634 164.731 162.392 157.545 73.2796 71.1867 0

Figure 15 provides a graphical representation of the first row in Table 5.3, that is, the
relative difference in the recognition probabilities between the correct and competing
models with radar 1 as the test sequences generator. Obviously, the smaller the
relative difference the greater the likelihood that a false recognition could occur.
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Figure (15): Relative Log Recognition Scores

Figure 16 uses radar 1 and radar 3 as the generators of 500, 10-word length test
sequences and displays the actual recognition probabilities for HMM1 (shown as
stars) and HMM3 (shown as squares) as coordinates in the x-y plane. The x-axis
represents the recognition probability of HMM1 and the y-axis is the recognition
probability of HMM3. Notice how, on the whole, both HMMs correctly classify the
observation sequences. Those sequences that are incorrectly classified lie on the
wrong side of the decision boundary line xy   (the maximum-likelihood (ML)
threshold) which is drawn as a reference to more easily see when false recognition
occurs.
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Figure (16): Recognition probabilities for HMM 1 and 3

Recall from Table 2 that HMM1 is more likely to incorrectly classify a signal from
radar 3 than HMM3 could classify a signal from radar 1. It is seen in Figure 16 that
some squares are lying above the decision line, but no stares lying below it. The
scatter patterns, for each HMM, have also been elliptically drawn to show the general
distribution of the recognition probabilities. The area between the two ellipses when
they intersect each other has a closed form expression and represents a 'reject' region.
A recognition point       13 ,  OPOP lying in the intersection of the two ellipses if

exists would be unclassifiable due to a lack of sufficient information in the
observation sequence.

Figure 17 gives a graphical 3-dimensional histogram view of Figure 16, The
observation sequences used in this simulation are 25-words long, which explains why
there are no false recognition points as compared to Figure 16 where the sequences
were only 10-words long. It is interesting to note that the histograms provide a jointly
Gaussian distribution for the two scatter patterns. This is even more evident in Figure
18 where the distributions of the radar 1 and 3 test sequence patterns are shown for
each axis respectively. Figure 19 gives a spatial view of these distributions.



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EEOOO -1

20/26

-60

-40

-20

0

-60

-40

-20

0
0

0.01

0.02

0.03

0.04

0.05

0.06

HMM3 Recognition Probability

3-D Histogram view of Recognition Probability

HMM1 Recognition Probability

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
c

y

Figure (17): 3-D Histogram of recognition probabilities
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Figure (18): Radar 1 test sequence recognition probabilities
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It is evident from the previous figures that the distribution of the recognition
probabilities for both scatter patterns in Figure 16 closely resembles a jointly log-
normal distribution in the HMM1 and HMM3 axes. In general, an L-dimensional
recognition probability space (probability space with L competing HMMs) could be
described by the multivariate Gaussian density function. Denote each of the Gaussian
random variables (recognition probabilities)    LlOP l ,......,2,1,   as

 TL ,,........., 21  with mean vector  TL ,........,, 21  and the covariance

matrix     TE  where T represents the matrix transpose function. The Gaussian

PDF is described by [8] as
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In the special 2-dimensional (L=2) case described in the preceding sections, the
distributions of the scatter patterns in Figure 16 would follow a bivariate Gaussian
density function with covariance matrix
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where   is the correlation coefficient defined as
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where 2

1  and 2

2  are the variance of 1  and 2  respectively. The determinant of the
covariance matrix is

 22

2

2

1 1   (25)

and the matrix inverse







































2

221

21

2

1
22

121

21

2

21

1

1

1

11













 (26)

In order to see if equation 22 does, in fact, accurately model the data points
distribution, another simulation was run using radars 7 and 8 as the test sequence
generators. 1500 different sequences were used and the recognition probabilities are
plotted in Figure 20 (analogous to Figure 16).
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Figure (20) : Recognition Probability for HMMs 7, 8

4. Decision Threshold with Unknown Signals:

The decision threshold shown in the preceding sections assumes that the only two
possible signals that can be received originate from either radar 1 or radar 3. If a
recognition point lies above the threshold then the classification output will be for
radar 1; if it lies below the threshold then the output will be in favour of radar 3.
What would happen, however, if the received signals were from an unknown source-
neither radar 1 nor radar 3? Both HMMs would still compute recognition
probabilities (one being larger than the other) which would imply that the signal
would be erroneously classified since it do not belong to either. Instead, it would be
highly desirable for the receiver to say that it can not recognize the signal because it
has no representative HMM in the threat library. That is, how small must the
recognition probabilities computed by HMMs 1 and 3 be before the receiver rejects
the observation sequence? Recall from Section 4 that the intersection of the two
ellipses in Figure 16 could be a region in which the receiver would say that it does
not have enough information (too short test sequence) to decide from which radar the
received signal is originated. In a similar manner, if a recognition point fall outside
the ellipse, it would make sense to decide that the observation sequence was
generated from unknown source. Figure 21 shows the scatter patterns for HMMs 1
and 3 with three different radar sources: radar 1, radar 3 and unknown radar.
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Figure (21): Scatter patterns with unknown radars

Since the unknown radar's scatter pattern lies below the line, xy  , decision
threshold, it would be incorrectly classified as radar 3 if there were no reject option
for HMM3. Because in a practical situation it would not be possible to construct such
a scatter plot for a foreign signal since the PRI statistics are unknown, a threshold
must be constructed based on our confidence of the positions of the recognition
points for the known signals. The probabilities of false recognition of unknown signal
and missed detection of known signal would both depend on our confidence level.
Have to rely solely on the known statistics of the scatter patterns for the HMMs in the
threat library. A preliminary approach would be to use the ellipse in Figure 21 as a
foreign signal reject threshold; any recognition point lying outside the ellipse would
be rejected. A typical scatter plot such as that one shown in Figure 21 would
therefore consists of two reject regions. The first would be the region where we
decide that the observation sequence is not long enough to classify and can be
described by the intersection of the two ellipses if exist. The second region would be
that area lying outside each ellipse in order to avoid incorrect classification of
unknown signals.

5. Conclusions:

This paper proposes a method for determining pre-assigned threshold settings and
reject regions for the competing HMMs. The proposed method used the concept of
distance vectors which relied purely on a prior knowledge of a radar's PRI statistics.
This was a template-matching classification system where the observation vector was
compared to theoretical vectors and a correlation made according to the mean squared
error. It was shown that the MSE between a theoretical probability vector and a
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received vector is distributed according to a central Chi-square distribution if the two
vectors are from the same source. Otherwise, the MSE of a competing theoretical
vector will follow a non-central Chi-square distribution. Simulations showed that the
actual false recognition rate as a function of the MSE variance only coarsely followed
the theoretical curve which is most likely due to the fact that even the correct model's
distance vector contains a small bias term. This would imply that it is not a perfect
central Chi-square random variable and, accordingly, yield distributions of what more
closely resemble each other thus causing the false recognition rate to rise.
Additionally, since the variances involved are so small, there may be some round-off
error in the calculations. Nevertheless, the distance vector concept can still at least
provide a qualitative indication about how correlated two different radars are without
the use of HMMs and how likely a radar will be mistaken for another.
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APPENDIX A
Table 1 : PSEUDO-RANDOM RADARS

P-R   Radar 1 P-R Radar 2 P-R Radar 3 P-R Radar 4

Word P(occur) Word P(occur) Word P(occur) Word P(occur)

0 1 0.25 0 0 0 1 0.25 1 0 1 0 0.25 0 1 0.5
0 0 1 0.25 0 1 0 1 0.25 1 1 0 1 0.25 0 0 1 0.5
0 1 1 0.25 0 1 1 0 0.25 0 0 1 0.25

1 0 0 1 0.25 0 1 1 1 0.25 1 0 0.25

P-R  Radar 5 P-R Radar 6 P-R Radar 7 P-R Radar 8

Word P(occur) Word P(occur) Word P(occur) Word P(occur)

0 0 0 0 1 0 1 0.25 1 0 0 0 0 0 0 ⅔ 0 0 0 1 0 1 0.25 1 0 0 0 0 0 0.2
0 1 0 1 0.25 1 0 1 0 1 0 ⅓ 0 1 0 0 0 0 0 0.25 1 0 0 0 0 0 0 0.2

1 1 0 1 1 0 1 0 1 0.25 0 0 0 0 0 0 0 0
1

0.25 1 0 0 0 0 0 0 0 0.2

0 0 0 1 1 0 0 1 0.25 0 1 0.25 1 0 0 0 0 0 0 0 0 0.2
1 0 0 0 0 0 0 0 0 0 0.2

APPENDIX B :    DISTANCE VECTOR INFORMATION

Table 2. The 4 And 8 Components Distance Vector for Each Of The 8 Pseudo-Random Radars

Sequence
generator

4-component
Distance vector

8-component
Distance vector

P-R Radar1 0.5 1 1 0.5 0 0.5 0.5625 0.4375 0.5 0.5 0.4375 0.0625
P-R Radar2 0.75 1.25 1.25 0.75 0.3125 0.4375 0.75 0.5 0.4375 0.8125 0.5 0.25
P-R Radar3 0.375 1.125 1.125 0.625 0.125 0.25 0.625 0.5 0.25 0.875 0.5 0.125
P-R Radar4 0.5 1 1 0 0 0.5 1 0 0.5 0.5 0 0
P-R Radar5 1.5 2.25 2.25 1 0.75 0.75 1.5 0.75 0.75 1.5 0.75 0.25
P-R Radar6 3.333 1.667 1.667 0 2.6667 0.667 1.667 0 0.6667 1 0 0
P-R Radar7 2 1.25 1.25 0 1.5468 0.4531 1.25 0 0.4531 0.7969 0 0
P-R Radar8 6 1 1 0 5 1 1 0 1 0 0 0

The 4-component distance vector for radar I represents the following expected 2-symbol transitions:

        1,1,0,11,0,0,04 EEEEd i  (1)

The 8-component distance vector represents the following expected 3-symbols transitions:

                1,1,1,0,1,1,1,0,1,0,0,1,1,1,0,0,1,01,0,0,0,0,08 EEEEEEEEd i  (2)

Table 3. Euclidean Distance Chart Calculated from 2-Symbol Transition Distance Vector

P-R
Radar1

P-R
Radar2

P-R
Radar3

P-R
Radar4

P-R
Radar5

P-R
Radar6

P-R
Radar7

P-R Radar8

P-R Radar1 0 0.5000 0.2500 0.5000 2.0917 3.0275 1.6202 5.5227

P-R Radar2 0.5000 0 0.4330 0.8660 1.6202 2.7536 1.6202 5.5227

P-R Radar3 0.2500 0.4330 0 0.6614 1.9843 3.1190 1.7500 5.6624

P-R Radar4 0.5000 0.8660 0.6614 0 2.2638 2.9859 1.5411 5.5000

P-R Radar5 2.0917 1.6202 1.9843 2.2638 0 2.2449 1.8028 4.9371

P-R Radar6 3.0275 2.7536 3.1190 2.9859 2.2449 0 1.4576 2.8289

P-R Radar7 1.6202 1.6202 1.7500 1.5411 1.8028 1.4576 0 4.0156

P-R Radar8 5.5227 5.5227 5.6624 5.5000 4.9371 2.8289 4.0156 0
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Appendix C :  Probability vector information

Table 4. The 8-Component Theoretical Probability Vectors For Each Of The Eight Radars.

P(0,0,0) P(0,0,1) P(0,1,0) P(0,1,1) P(1,0,0) P(1,0,1) P(1,1,0) P(1,1,1)

P-R Radar1 0 0.1667 0.1875 0.1458 0.1667 0.1667 0.1458 0.0208

P-R Radar2 0.0781 0.1094 0.1875 0.1250 0.1094 0.2031 0.1250 0.0625

P-R Radar3 0.0385 0.0769 0.1923 0.1538 0.0769 0.2692 0.1538 0.0385

P-R Radar4 0 0.2000 0.4000 0 0.2000 0.2000 0 0

P-R Radar5 0.1071 0.1071 0.2143 0.1071 0.1071 0.2143 0.1071 0.0357

P-R Radar6 0.4000 0.1000 0.2500 0 0.1000 0.1500 0 0

P-R Radar7 0.3438 0.1007 0.2778 0 0.1007 0.1771 0 0

P-R Radar8 0.6250 0.1250 0.1250 0 0.1250 0 0 0

For example,  



 8

1

)(

)1(
0,0,0

i

id

d
P , where d is the distance vector


