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Abstract 
 
The ability to extract and describe the salient features represents the most difficult task of 

the aircraft recognition systems.  In this paper, an aircraft recognition system based on the 
isodensity lines associated with the three-dimensional reflectivity of the model is illustrated.  
A recognition algorithm is described, which uses combination of 2-D moments in three-
dimensional isodensity maps to represent the aircraft as a feature vector containing 2L elements. 
Using a distance-weighted k-nearest neighbour rule as a classifier, the algorithm achieves  
a highly recognition rate when applied to 336 test images that represent six aircraft models.  The 
same procedures are applied using the first two components of invariant moments, and the first 
system was found superior to this system with about 15% using the same number of isodensity 
lines. 
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I  Introduction 
 
Research on image recognition systems continues because these systems are useful tools in 

many applications, such as criminal identification, security checking, video surveillance, and 
target tracking.  Aircraft recognition systems are commonly utilize in different manner as a 
feature vector or 2-D perspective views.  

 
Several recognition systems used the Fourier descriptors and 2-D moments to recognize the 

objects in 2-D and 3-D planes. Granlund [1] is one example of a researcher who presented a 
method to extract new features from Fourier coefficients used as shape descriptors invariant with 
respect to size, orientation, position, and starting conditions. Dudani [2] presented an 
experimental study using the theory of 2-D moment invariants [3] for automatic identification of 
3-D objects from 2-D perspective views.  In his study, a Bayes rule and a distance-weighted k-
nearest neighbour rule are applied separately for the design of an aircraft recognition system.   
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Other recognition systems use the grey-scale digitized image of an aircraft directly without 

pre-processing operations such as segmentation and these include some well known systems such 
as WISARD, back propagation networks  and Kohonen's matrix system, all of which are 
reviewed in reference [4].  Somaie et al used the back propagation network to recognize aircrafts 
[5]. In this paper, the presented training algorithms satisfied high recognition performance when 
the number of hidden neurons was less than or equal ten times the number of classes. It was 
found that the network recognizes the test images correctly even the noisy and the incomplete 
images [5]. An information theory approach has been exploited by Somaie et al [6], who used 
eigencrafts (in a low dimensional space) to model aircrafts and to distinguish them in a limited 
database of aircrafts. Somaie et al exploited the principal component analysis to create a new co-
ordinate system called eigencraft for object representation where each aircraft is projected onto 
that plane and the projection coefficients are used for the recognition purpose. The new features 
are invariant to translation, scale and rotation.   

 
The approach described in this paper is based on isodensity maps and uses a simple method 

of clipping the image from the background together with a fast moment-based recognition 
algorithm.  An isodensity line approach may be better able to cope with problems caused by 
aircraft maneuvers because these lines contain some information about the shape of the aircraft 
fuselage from the nose to the tail. 

 
The procedures used to capture aircraft images and to isolate an aircraft from the background 

and generate an isodensity map of aircraft are described in section II.  2-D moments are used to 
form a feature vector and these, together with the recognition algorithm, are defined in section 
III. The complete recognition system has been tested using a variety of aircraft images and some 
of the experimental results obtained are presented in section IV. Section V contains discussion 
and conclusions. 
 
 

II Isodensity map of an aircraft 
 

Individual models of aircrafts were illuminated using a white spotlight, of power 150 W with 
reflector of diameter 28 cm. A fixed working distance was used during image capture process. A 
frame transfer type CCD camera model 4712 (625 line CCIR standard), manufactured by COHU 
and fitted with a f/1.4 Cosmicar TV lens of 25mm focal length, was used for image capture.  This 
combination of focal length, camera and working distance ensured that even the longest aircraft 
captured occupied no more than 90% of the vertical field of view.  The camera was connected to 
a PIP1024 frame grabber, manufactured by Matrox, which occupied one of the expansion slots of 
a 0.996 GHz, 128 MB of RAM, Pentium III PC.  All images were digitized to 256 grey levels 
and were 512 by 512 pixels in size. To make it easier to isolate the aircraft from the background, 
each model was put at a black sheet prior to image capture. Eight separate images were captured 
for each aircraft model in 4/πn≅ degree ( 7...,,1,0=n ) to get different orientation of the 
aircrafts. Fig. 1 shows samples of aircraft images after aspect ratio correction.  
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The following steps were taken to clip each aircraft image from the background and to 
centralize the aircraft into the image plane.  
 
(1) An aspect ratio correction was first carried out using bilinear interpolation. 
 
(2) Smoothing was performed using a median filter with a window of size 5 by 5 pixels, which 

yielded an image named “image 1”. 
 
(3) A binary image map was obtained by thresholding. If image1>= threshold value, 

image2=225, else image2 = 0. 
 
(4) If the image called “image 3” is set to be ‘0’ grey level, then the clipped image can be 

extracted simply, if image2 = 255, then image3 = image1. 
 
(5) The centre of gravity of each aircraft was obtained, and each aircraft was translated to the 

centre of the image plane.  
 
 

                 
     

Fig. 1.  Samples of the aircraft images after aspect ratio correction. 
 

The entire process of image segmentation is illustrated in Fig. 2 (a) to (c) which shows an 
example of the aircraft image after aspect ratio correction, the binary image, and the clipped 
aircraft image respectively.  
 

                                                                                 
                                                          (a)               (b)                 (c) 

 
Fig. 2.  (a) Aircraft image after aspect ratio correction, (b) the binary image, and (C) the 

corresponding aircraft clipped from the background. 
 
Once the aircraft was isolated from its background, the isodensity map of each aircraft was 

obtained using the following processing. 
  
(1) Calculate the histogram of the clipped aircraft. 
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(2) The grey range of the histogram is then divided into L equal levels, where the range of 

each level or band is defined precisely.  
 

(3) A number of L isodensity lines were obtained to each aircraft. Each isodensity line was 
represented in 2-D plane as a binary image where the background is set to zero grey level 
and the isodensity region was replaced by the corresponding value of L. 

 
(4)  The isodensity map of aircraft was constructed by adding their isodensity L regions into 

one image. 
 
Fig. 3 illustrates the processing of constructing of the isodensity map, where Fig. 3 (a) to (c) 

shows the histogram of the clipped aircraft, the histogram of the isodensity regions, and the 
isodensity map respectively. 
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                               (a)                               (b)                                     (c) 

 
Fig.  3.  (a) The grey-level histogram of one of an aircraft image, (b) the corresponding quantized 

histogram, and (c) the isodensity aircraft map. 
 

The isodensity map (contrast stretched and magnified for display purposes) obtained from the 
aircraft of Fig. 2(C) using the value L = 8 is presented in Fig. 3.  The isodensity map emphasises 
the variation of reflectivity resulting from variations in aircraft fuselage condition and orientation 
over the aircraft image.  The isodensity regions of the isodensity aircraft map depicted in Fig. 3 
(c) for each of the isodensity band are shown in Fig. 4.   
 

            
 

Fig. 4.  From left to right isodensity regions of the isodensity map depicted in Fig. 3 (c). 
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III The recognition algorithm 
 

2-D moments [3] have been used as the basis of feature vectors in many pattern 
recognition applications and are defined as 

m f x y x ypq
p q

yx

= ∑∑ ( , )      (1) 

Where (p + q) is the order of the moment defined for p, q = 0, 1, 2, ..., and f(x, y) is the 2-D 
intensity function of the pixel with co-ordinates (x, y).  It is clear that equation (1) is not invariant 
under changes of position, scale, and orientation of the image.  A more useful set of moments are 
the central moments mpq  defined as 

m x x y y f x ypq
x y

p q= − −∑ ∑ ( ) ( ) ( , ) ,   (2) 

where 0010 / mmx = , and 0001 / mmy = .  The set of moments in equation (2) are invariant to 
translation, but not scale, and orientation.  In reference [3], Hu presented a set of moments, which 
are combinations of the central moments mpq .  The basic idea to achieve scale invariance is to 

divide each component of the set { }mpq  by the factor equal ( )
( )

m
p q

00
2

1+
+

 to get a dimensionless 

moment set.  Hu then defined combinations [3] of [ / ( ) ]
( )

m mpq

p q

00
2

1+
+

 which are invariant to 
translation, scale, and orientation.  The set of moments defined by Hu consists of seven elements 
derived from the second and the third moments of the set{ }mpq .  Although using these moments 
can compensate for yaw rotations about the aerodynamic axis left or right in the x-y plane, they 
cannot compensate for other rotations occurring in the aircraft maneuvers such as rotation of the 
aircraft's head about the longitudinal axis (roll or bank rotation) or pitching the nose up or down 
about the wing axis.  The first and the second element of the 2-D invariant moment set are the 
most commonly used elements and used by Hu [3] for character representation.  These elements 
are defined as 

 
( )/m m m2 0 0 2 00

2+ , and      (3) 
 

[( ) ]/m m m m20 02
2

11
2

00
44− +      (4) 

 
The equation (2) is invariant to translation, and not to scale or rotation. Since all the 

aircraft images were captured under nominally the same conditions, the sensitivity of mpq  to 
changes of scale should not be very significant because the distance between camera and model 
was kept constant.  Changing orientation of the aircraft is still one of the most difficult problems 
for an aircraft identification system but again in the present work the camera system was viewed 
each model from its plane view. In this paper, the following combinations of the mpq  calculated 
using individual isodensity regions have been used to form a feature vector of each aircraft for 
recognition purposes. 
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Since equation (5) represents the area of each isodensity region, and equation (6) contains 
the same combination as equation (3), equations (5) and (6) are invariant to the translation and 
rotation (if the rotation is in x-y plane).  Scale invariance can be achieved easily, if the clipped 
aircraft images are normalized using the same manner like Khotanzad method [7].  However, the 
present application does not need this normalization, since the camera position is fixed.  
Disadvantages of normalizing are that this process will add computation noise as well as possibly 
changing the contrast of the new images. 

 
The combinations defined by equations (5) and (6) were calculated for each of the L 

isodensity regions with f(x, y) replaced by the corresponding value of L.  This provided  
a feature vector of dimension 2L to replace the aircraft image for recognition purposes.  The 
selection of the classifier for any pattern should be appropriate to the problem in hand and for this 
algorithm the distance-weighted k-nearest neighbour rule was preferred because the probability 
of error is small, compared with other classifiers and, unlike a Bayes classifier [8], it does not 
need any a priori information.  The entries in the database of the aircraft library are represented 
by R ij( ), where i = 1, 2 , ..., 2L and j = 1, 2, ..., K, where K is the number of aircrafts.  If T i( )  
represents the unknown pattern, then the distance between T i( )  and each entry in the library R ij( ) 
can be defined as 

 
d T j R tj j= −[ ( ( ) ( ) ) ] /2 1 2    (7) 

 
If dmin represents the minimum distance found, corresponding to the nearest neighbour and dmax 
represents the maximum distance found, and then a weight wj related to each library entry can be 
defined as follows: 
 

w
d d

d dj
j=

−

−
max

max min  
   (8) 

 
It is clear that the value of wj varies from the maximum value 1 for the nearest neighbour to a 
minimum value of 0 for the furthest neighbour. 
 

V  Experimental results 
 

A six aircraft models were used for this study included different aircrafts  Eight snapshots 
were taken of each model under nominally the same conditions and one version of each of these 
models was used as a reference pattern while the other seven versions were used as test patterns, 
giving 336 different test permutations.   
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The performance of the recognition system was tested using one set of 1m  and 2m  values.  
This set of the feature vector used to recognize the aircraft and the corresponding recognition 
obtained for different values of L are shown in the first row of Table 1.  It can be seen that at first 
the performance increases as L increases and becomes stable at a value of 100% when 4≥L .  

 
 It was found that the identification failures were usually associated with boundary variations 

in the aircraft image of a given model due to changes in the orientation between settings. The 
second method was carried out after replacing the combined moments defined by equations (5) 
and (6) with a 2-D invariant moments defined by equations (3) and (4) and the recognition 
performance is illustrated in the second row of the Table 1.  It is apparent from Table 1 that the 
best recognition rate achievable was 85.7% with L = 8 which is significantly worse than those 
presented in Table 1 (row 1) as shown in Fig. 5. In order to improve the recognition performance 
listed in Table 1 (row 2), the feature vectors defined by equations (3) and (4) are normalized as 
follow, 
 

m i m ik k i i( ) ( ( ) )/= −µ σ ,    (9) 
 
where µ i  and σ i  represent the mean and the standard deviation of component i of the feature 
vectors belonging to the aircraft library, and k = 1, 2, ..., K, where K is the number of classes or 
aircrafts.  Since each aircraft in the aircraft library has been normalised using equation (9), each 
component of the feature vectors has zero mean, and unit variance.  At the recognition stage, each 
unknown vector should normalize before applying to the classifier, and the recognition success 
was found to achieve 93.4% using only twelve components as shown in Table 2 and Fig. 6.  It 
was found if the same normalization is applied to the feature vectors defined by equations (5) and 
(6), it does not add any significant effect as shown in Fig. 6.  It is apparent from Fig. 6 that it is 
still the aircraft identification system based on the 2-D combination moments defined by 
equations (5) and (6) is superior than that one using the first two components of the invariant 
moments set. 
 
 
 
 
 
 
 
 
 
 

 
Table 1.  Recognition rates for the aircraft using isodensity and ordinary moments. 

 
 
 
 
 
 

L 2 4 6 8 10 12 14 

IMR (%) 97.9 100 100 100 100 100 100 

OMR (%) 73.3 84.2 85.4 85.7 86.6 86.0 84.8 
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Table 2.  Recognition rates for the aircrafts using a normalized feature vector. 
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Fig.  5. The top curve represents the performance of the aircraft identification system using 

equations (5) and (6) as a feature vector and the lower curve corresponds to the same system using 
equations (3) and (4). 
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Fig. 6. The top curve represents the performance of the aircraft identification system using 

equations (5) and (6) as a feature vector and the lower curve corresponds to that same system 
using equations (3) and (4) after normalization using equation (9). 

 
 
 
 
 

 
The recognition success rate using both methods depends also on the dynamic range of the 

isodensity map.  In other words, if the dynamic range of the iosdensity maps is increased for the 

L 2 4 6 8 10 12 14 

IMR (%) 97.6 100 99.4 99.7 99.7 99.7 100 

OMR (%) 91.0 93.1 93.4 91.9 91.6 92.8 91.9 
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case in hand, the optimum recognition performance could move towards the right along the L 
axis. 
 

VI Discussion and conclusions 
 

The main task of the most recognition systems is to reduce the dimensionality of the input 
pattern, which in turn speeds up the process of the target identification. The system described in 
this paper scores well on this count because it employs a feature vector consisting of at most only 
16 components. The presented recognition algorithm was found to achieve a 100% recognition 
rate when applied to 336 test images taken from six aircraft models, which were available at that 
time. A further advantage of the present technique is the very short recognition time required 
because of the low dimensionality of the aircraft data.  

 
 
It is found that as combination of 2-D isodensity moments are replaced by the first two 

components of the invariant moments set and the resulting recognition rate was found to be only 
85.7%.  These results improved when the feature vector was normalised, achieving 93.4% using  
a 12-dimensional feature vector.  On the other hand, this normalization does not make any 
significant difference in the first method.  However, the effect of changing the combination of 
isodensity 2-D moments from first and second orders to higher orders may not be useful because 
the later are more sensitive to the noise than the lower order moments. In conclusion, it was 
gratifying to find that the present aircraft identification system achieved a 100% recognition rate 
when applied to a number of models chosen randomly. Nevertheless, further investigations need 
to be carried out to determine how well the recognition rate holds up as the number of models 
increases. 
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