
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 SP - 6 -

* Egyptian Armed Forces

Military Technical College

Kobry Elkobbah,
Cairo, Egypt

5th International Conference
on Electrical Engineering

ICEENG 2006

AN ANALYTICAL PERFORMANCE BOUNDS OF

NON-SYSTEMATIC PUNCTURED PARALLEL

 CONCATENATED CODES

Moataz Mohamed Salah*

ABSTRACT

A class of powerful error-correcting codes called parallel concatenated codes, or turbo
codes, have performance superior than all other coding techniques. Turbo codes have
been shown to achieve bit error rate performance close to Shannon's limit.
In this paper, based on random puncturing of non-systematic bits of low rate turbo
codes, we derive an analytical performance bound for high rate parallel concatenated
turbo codes. The new performance bound calculations and evaluations have been
investigated and compared with the simulation results.

KEYWORDS: Turbo Codes, Space-Time Codes, Diversity

1. INTRODUCTION
Parallel concatenated codes, turbo codes [1], have been shown to achieve near-
Shannon-limit error correction performance with relatively simple component codes
and large interleavers. For a bit error probability of 10-5 and code rate = 1/2, it has
been shown that an Eb/N0 of 7.0 dB is required for block lengths of 65,536 bits. A
typical turbo code encoder is shown in Fig. 1. This encoder consists of two binary rate
1/2 convolutional encoders, an interleaver of length N, along with puncturing and
multiplexing devices. Without the puncturing device, the encoding is rate 1/3. The
decoding process relies on iterative processing in which each component decoder
takes advantage of the work performed by the other in the previous step.

Fig. 1. Turbo-Code Encoder.

dk

Y k1

Y k2

xk

yk

Puncturing
and

multiplexing

RSC
Code2

RSC
Code1

data

Interleaver

dk

Y k1

Y k2

xk

yk

Puncturing
and

multiplexing

RSC
Code2

RSC
Code1

data

Interleaver

A punctured turbo code is a high-rate code obtained by the periodic deleting of
specific code symbols from the output of a low-rate code. The resulting high-rate
code depends on both the low-rate code (original code) and on the number and
specific positions of the punctured symbols. Since the first appearance of turbo codes,
puncturing has been used to increase the code rate. Studies [2, 3, 4] that focused on
punctured turbo codes have relied on simulation due to complexity associated in the
analytical modeling.
Many of the theoretical and structural properties of turbo codes are discussed in [4, 5,
6, 7]. The most complete works in the analytic bounds are presented in [6, 7]. In [6],
the authors derive an analytical upper bound for the average performance of the
coding scheme. The average upper bound is constructed by averaging over all
possible interleaver configurations. This upper bound is shown to be independent of
the interleaver used and reveals the influence of the interleaver length on the code
performance. In [7], the authors apply the transfer function bound techniques to
obtain an upper bound on the probability of bit error. In their study, the authors
developed a method for a recursive computation of the Weight Enumerating Function
(WEF) of the convolutional code that is used as a constituent encoder with random
interleaving for the calculation of the bound of the turbo code.
This paper extends the results presented in [6] and [7] by deriving an upper bound of
the punctured turbo codes. This is accomplished by, for each codefragment, averaging
over all punctured positions, which in turn yields all possible punctured weights. The
derivation of the punctured bound is presented in the next Section. Section 3 presents
the calculation and evaluation of the punctured bound in case of AWGN channel.

2. DERIVATION OF THE PUNCTURED BOUND
The error performance of punctured convolutional codes may be evaluated by
computing the upper bounds on the bit error probability. Using the transfer function
bounding technique, the upper bound of the bit error probability can be evaluated.
The transfer function of a convolutional code is evaluated by solving equations
describing the transitions between the states of the finite-state encoder. For punctured
convolutional codes, the first step in the evaluation is the drawing of a proper state
diagram for the encoder under consideration. Knowledge of the perforation matrix is
necessary to get the transfer function of the punctured code.
For punctured convolutional codes, extensive computer searches have been performed
to get an optimal (maximum free distance) puncturing pattern to obtain higher rates
from the original low-rate code. Once the puncturing pattern is obtained, it is applied
to the original low-rate trellis to get the WEF of the higher rate code. The complexity
here is how to get the weight enumerating function of the parallel concatenated
punctured code. For turbo codes, the computer search for optimum puncturing patterns
is very complex due to the existence of the interleaver. One of the goals of this
research is to get the WEF of the punctured turbo code that is independent of specific
puncturing pattern.
Using the conventional union bound on the probability of codeword error, wP , as
follows:

 ()dPdtP
d

w 2)(∑≤ (1)

Where t(d) represents the number of codewords of length N and weight d and ()dP2 is
the pair-wise error probability for codewords with weight d. In case of puncturing the

output codewords, the output punctured weight will be denoted by p. Then for
punctured turbo codes, the probability of codeword error can be written as follows:

 ()pPptP

p
w 2)(∑≤ (2)

 Where t(p) represents the number of codewords of length N and weight p and ()pP2
is the pair-wise error probability for the punctured codeword with weight p.
The problem now is how to get t(p) from knowledge of the original (before
puncturing) code, t(d). From equation (2), the probability of bit error, bitP , can be
defined as follows:

 () ()∑
=

≤
N

i
bit pPpt

N
iP

1
2 (3)

Let t(p,d) represents number of codewords with punctured weight p produced from
puncturing a codeword with weight d. Then, we can write t(p,d) in terms of t(d) as
follows:

 () () ()dppdtdpt =, (4)
Taking summation over d, then

 () () ()dppdtpt
d
∑= (5)

Let t(i,d) represents the number of codewords of length N and weight d which
generated from input sequence with weight i. Using the uniform interleaver introduced
in [6] to calculate t(d) from the knowledge of t(i,d) by averaging over all possible
interleavers of length N as follows:

 () ()idp
i
N

dit ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=, (6)

Where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
N

 is the number of input sequences of length N with weight i, then,

 () ()∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

i
idp

i
N

dt
1

 (7)

 Substituting in equation (5), we get:

 () () ()∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

d i
dppidp

i
N

pt (8)

The probability of output codeword with weight d of turbo code can be written in
terms of the individual output weights 210 ,, ddd , where 0d represents the output
weight of the systematic part and 1d and 2d represent the output weight of each
constituent code fragment, then 210 dddd ++= . Since each codefragment weight is
independently generated, then:

 () ()∑
++=

=

210
210 :,,

210 ,,
dddd

ddd
idddpidp (9)

Where () () () ()idpidpidpidddp 210210 ,, = , substitute in equation (9), then
 () () () ()idpidpidpidp

d
dddd

d d
21

:

0
0

210
1 2

∑ ∑ ∑
++=

= (10)

Assuming no puncturing of systematic bits, then

 ()
⎩
⎨
⎧

≠
=

=
0

0

0
1

di
di

idp o (11)

From equation (6), we can get ()idp 1 and ()idp 2 as follows:

 () 2,1
),(

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= j

i
N
dit

idp j
j (12)

Now, calculate the probability of getting a punctured codeword of weight p from
puncturing a codeword with weight d, ()dpp , from the individual components of the
code. Since each codefragment puncturing is independently processed, then:

 () () () ()2211

:

00
0

210
1 2

dppdppdppdpp
p

pppp
p p

∑ ∑ ∑
++=

= (13)

Assuming no puncturing of systematic bits, then

 ()
⎩
⎨
⎧

≠
=

=
0

0
0 0

1
di
di

dpp o (14)

To calculate ()jj dpp using random puncturing. Since there is no specific optimal
pattern for puncturing, by averaging over all possible puncturing patterns that yield
different punctured weights, so use the hypergeometric probability distribution
function to get the probabilities required. The hypergeometric distribution [8] is a well
known distribution in probability theory.
 For a given codeword of length N and weight d generated from a codeword of
information weight i, the process is to puncture (delete) M bits from the N bits (i.e.,
randomly choose N-M bits from N bits to survive). The hypergeometric probability
distibution gives the probability that a codeword with weight p is generated from
puncturing a codeword with weight d as follows:

 () 2,1| =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

= j

MN
N

pMN

dN

p

d

dpP
j

j

j

j

jj jj dp ≤≤0 (15)

3. APPLICATION OF THE BOUND AND PERFORMANCE
EVALUATION

This section shows the results of the derived punctured bound for different turbo code
rates derived from the original code rate 1/3 turbo code. Using the simulation model,
obtained results are compared with derived analytic bounds. The simulation model
uses a turbo code with two identical parallel concatenated recursive systematic
convolutional constitute encoders, separated by a random interleaver. Each encoder
uses octal generators 5 (feedforward) and 7 (feedback) and is denoted as (5/7)8. The
encoded bits are punctured and then modulated using Binary Phase Shift Key (BPSK)
modulation, and then transmitted over an Additive White Gaussian Noise (AWGN)
channel. The decoding is performed using a Soft Output Viterbi Alogorithm (SOVA)
as a constitute decoder [9] with 8 iterations.

The derived punctured bound of the turbo code with two identical constituent encoders
is applied with generator functions (5/7)8. The algorithm in [7] is used to calculate the
weight enumerating function, t(i,d), of the constituent codes.
It is assumed that the channel has AWGN with two-sided noise power spectral density
of N0/2. Using BPSK modulation, the pair-wise probability is given by [10]:

 () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0
2

2
N
prE

QpP b (16)

where r is the code rate of the code, Eb/N0 is the signal-to-noise ratio per information
bit, v is the codeword weight, and ()xQ is the tail integral of a standard Gaussian
density with zero mean and unit variance.
Fig. 2 shows the bound for frame length of 100 bits for different code rates of 1/3, 2/5,
1/2, and 2/3 respectively. As expected, the punctured bounds diverge at signal-to-
noise ratios larger than those that occur at rate 1/3.
The abrupt transition of the bound occurs when the signal-to-noise ratio, 0NEb ,
drops below the threshold determined by the computation cutoff rate R0, i.e., when
Eb/N0 < -1/r ln (21-r - 1) for a code rate r [7]. Fig. 2 shows the abrupt change occurring
for rates 1/3, 2/5, 1/2, and 2/3 at 2.03 db, 2.2 db, 2.5 db, and 3.1 db, respectively. The
error floor (the low slope region of the performance curve where the error rate
decreases very slowly with increasing the signal-to-noise ratio) still exists with the
punctured bound.

Fig. 2. Analytical performance bound for various code rates (N=100).

In computing these bounds for low signal-to-noise ratio, there is a false convergence.
For frame length of 100 bits, Fig. 3 illustrates this false convergence behavior for code
rate 2/3 at signal-to-noise ratio 0NEb =3 db (just below the threshold). On the other
hand, when the signal-to-noise ratio, 0NEb , is above the threshold, false convergence
is not a problem. Fig. 4 show the probability of error as a function of information
weight i and output weight of each codefragment, jp . Fig. 4 shows how quickly the

0 1 2 3 4 5 6 7 8 9 10
10-8

10-7

10-6

10
-5

10-4

10-3

10-2

10-1

100

SNR in dB

B
E

R

R=1/3
R=2/5
R=1/2
R=2/3

probability of error convergences when 0NEb =4 db. It is only some terms from i and

jp are needed for convergence (around 20 for both and independent of the frame
length).

Fig. 3. False convergence behavior at 0NEb =3 db (N=100, rate=2/3).

Fig. 4. Convergence behavior at 0NEb =4 db (N=100, rate=2/3).

10
20

30
40

50

10
20

30

40
50

10-2

10-1

 pj
 i

B
E

R

10
20

30
40

50

10
20

30

40
50

10
-2

10-1

pj
i

B
E

R

Fig. 5 shows a simulated punctured turbo code with a 200-bit frame length compared
with the analytical punctured bound at rates 2/5 and 1/2. At higher signal-to-noise
ratios (greater than approximately 2 dB), the bound accurately predicts the turbo
decoder performance. At signal-to-noise ratios less than R0, simulation is the only
way to predict the performance of turbo codes due to the divergence in the
performance of the analytical bound in this region.

Fig. 5. Analytical performance bound versus simulated bit error rate (N=200).

4. CONCLUSIONS

In this paper, the hypergeometric puncturing was introduced. The introduction of the
hypergeometric puncturing device makes the derivation of the analytical punctured
bound of turbo codes tractable. The hypergeometric puncturing device allows for
averaging over all possible punctured positions. Simulation results in AWGN were
also presented along with the analytical bound. The analytic performance bound was
compared with the simulation results obtained for various code rates. The comparison
shows that the two bounds, analytical and simulation are identical at higher signal-to-
noise ratios but diverge at lower signal-to-noise ratios. This bound can also be
extended to be used with different channels and for assistance in designing punctured
turbo codes.

5. REFERENCES:
C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: TURBO-CODES,” in Proceeding of 1993 IEEE International Conference On
Communication (Geneva, Switzerland, 1993), pp. 1064-1070.

[1]

M. Oberg and P.H. Siegel, “The effect of puncturing in turbo encoders,” International
Symposium On Turbo codes & related topics, Brest, France, pp.184-187, Sep. 1997.

[2]

F. Vatta, G.Montorsi, and F. Bahich, “Achievable performance of turbo codes over the
correlated Rician channel,” IEEE Transactions on Communications, Vol.51, No. 1,Jan..2003.

[3]

S. Benedetto and G. Montorsi, “Design guidelines of parallel concatenated convolutional
codes,” IEEE Global Communications GLOBECOM, pp. 2273-2277, November 1995.

[4]

D. Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, “Performance analysis of turbo
codes,” IEEE Military Communications MILCOM, pp. 91-96, November 1995.

[5]

0 1 2 3 4 5 6 7 8 9 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
Probability Of Error

SNR in dB

B
E

R

R=2/5 analytic
R=2/5 simulation
R=1/2 analytic
R=1/2 simulation

S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel concatenated
coding schemes,” IEEE Transactions on Information Theory, Vol. 42, No. 2, pp. 409-
428, Mar. 1996.

[6]

D. Divsalar, S. Dolinar, F. Pollara, and R. J. McEliece, “Transfer function bounds on the
performance of turbo codes,” TDA Progr. Rep. 42-122, Jet Propulsion Lab., Pasadena,
CA, pp. 44-55, Aug. 15, 1995.

[7]

R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Englewood Cliffs, NJ,
Prentice Hall, 1995, pp. 517.

[8]

J. Hagenauer and P. Hoeher, “A Vitrbi Algorithm with Soft-Decision Outputs and its
Applications,” Proc. of Global Communications Globecom’89, Dallas, Vol. 3, pp.
47.1.1-47.1.7, Nov. 1989.

[9]

J. G. Proakis, Digital Communications, New York: McGraw-Hill, 3rd ed., 2000. [10]

