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Abstract 
 
In this paper, a procedure for automatic classification among three types of QAM signals in 
presence of channel impairments is proposed. A combination of digital signal processing and 
pattern recognition methods is used for solving the classification problem. The proposed 
algorithm has been tested by computer simulations and has proven to be reliable and robust 
against the expected channel impairments such as noise and fading. It is found that all digital 
modulation types of interest have been correctly classified with a success rate > 91 % at 
signal-to-noise ratio (SNR) of 14 dB. 
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1. Introduction 
 
This paper is concerned with automatic modulation classification of digital communication 
signals. Modulation classification represents an intermediate step between signal interception 
and demodulation. It has several military and civilian applications. One of the military 
applications is communication intelligence in electronic warfare which is intended to 
determine the signature of the enemy transmitters by extracting the parameters that 
characterize their signals. These parameters are useful in threat recognition by comparing the 
signal characteristics of intercepted transmitter against a catalogue of characteristics or signal 
sorting parameters. Another application of modulation classification is that it enables us to 
produce a smart jamming against the intercepted signals. This is performed by generating a 
jamming signal with identical characteristics of the intercepted signal that contains false 
information to confuse the enemy. 
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Civilian applications include signal confirmation, interference identification, detection of 
non-licensed transmitters, and supervision of admitted wireless stations, to determine whether 
they obey the limits of their operation parameters. 
 
Actually, few articles were published in this area. In [1], a classifier that is based on the 
artificial neural network is used to classify analogue and digital modulated signals. Several 
key features are extracted from the received signals and are used in the classification. In [2], a 
classifier that is based on pattern recognition method is described. The power spectrum is 
applied as a signal feature that can be used in the classification. The classification algorithm is 
developed as a software application using digital signal processing technique. In [3], a 
classifier is proposed for digital modulation schemes based on fourth-order cumulants. In [4], 
the maximum-likelihood (ML) method is used to discriminate between QAM-16, QAM-32, 
and QAM-64. It is shown that the ML classifier is capable of classifying any finite set of 
distinctive constellations with zero error rates when the number of available data symbols 
goes to infinity. In [5], a classifier for MFSK signals contaminated with class-A impulsive 
noise and transmitted over time varying flat correlated fading channel is developed. 
 
The proposed algorithm in this paper utilizes the statistical pattern recognition approach for 
the classification among three types of QAM signals (QAMI, QAMII, and QAMIII). Table 1 
shows both the amplitude and phase characteristics of these types of modulations. These 
characteristics are such that for each type of QAM a certain number of amplitude and phase 
levels are assigned. The signal constellations of each modulation type of interest are shown in 
Fig. 1. The proposed algorithm is based on both the amplitude and phase characteristics of the 
intercepted signal. 
 
 
 

Table 1. Amplitude and Phase characteristics of QAM-16 types 
Type Number of amplitude levels Number of phase levels 

QAM I 2 8 

QAM II 3 12 

QAM III 4 8 
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Fig. 1 Signal constellations of (a) QAM I, (b) QAM II, and (c) QAM III 
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This paper consists of four main sections. In section 2, the signal and channel model is 
presented. In section 3, the proposed algorithm is introduced. In section 4, thresholds 
determination and performance evaluation for the proposed classifier are shown. Finally, the 
conclusion is presented in section 5. 
 
 
2. Signal and channel model 
 
The modulated signal, s(t), can be written as: 
 
 { }][)(Re)( ))(( ttj cetAts θω +=         (1) 
 
where A(t) is the signal amplitude, ωc is the carrier angular frequency, and θ(t) is the signal 
phase. The signal, s(t), is transmitted over a flat (frequency non-selective) fading channel in 
which its coherence bandwidth is much greater than the signal bandwidth. The channel fading 
effect, F, can be written as [6]: 
 

FjeF θη −=            (2) 
 
where η is the envelope of the multi-path signal which has a Rayleigh distribution with 
probability density function given by [6] 
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where bo represents the average scattered power due to multi-path. The phase θF has a 
uniform distribution and is given by [6] 
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The additive noise, w(t), is assumed to be white Gaussian noise with power spectral density of 
N0/2. Thus received signal, r(t), has the form 
 

 
)(}][)({Re

)()()(
))(( twetA

twtsFtr
Fc ttj +=

+=
−+ θθωη

      (5) 

 
 
3. Proposed Classifier 
 
The proposed classifier consists of three main stages; 1) Preprocessing stage, 2) key features 
extraction stage, and 3) Classification stage. The structure of the proposed classifier is 
depicted in Fig. 2. In the following each stage will be explained in details. 
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A) Preprocessing stage 
In this stage, the instantaneous phase and amplitude of the received signal are computed. The 
signal r(t) contains phase and amplitude information that can be extracted by means of 
Inphase-Quadrature (IQ) techniques or by using discrete Hilbert transform [7]. The extracted 
instantaneous phase can be represented as 
 
 πϕπθθθϕ <≤−−−= )(;)()()( tttt wF        (6) 
 
where θw(t) is the random phase attributed to the noise. The extracted instantaneous amplitude 
can be represented as [7] 
 
 ))()(cos()()(2)()()( 222 tttwtAtwtAta wF θθθηη −−++=     (7) 
 
where |w(t)| is the magnitude of the additive noise at the classifier . 
 
B) Key features extraction stage 
In this stage, we evaluate two key features, which are used in the classification process. The 
first one is the normalized histogram of instantaneous phase of the received signal while the 
second one is the normalized histogram of instantaneous amplitude of the received signal. 
 
In general, the histogram of a received signal parameter,ψ , is a discrete approximation to the 
probability density function (pdf) of the received parameter [4], that is 
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where k is the number of subintervals and )(ψΨF is the cumulative distribution function of the 
received parameter,ψ , and it is calculated as  
 

 ∫
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ΨΨ =
ψ

ψ dyyfF )()(            (9) 

 
where )( yfΨ  is the pdf of the parameter,ψ . 
Using the above definition, the histogram of instantaneous phase of the received 

signal, ))(( iH Φ ϕ , is evaluated over 48 subintervals in the [-π, π [ interval. The choice of the 
48 subintervals is taken in order to achieve a minimum reasonable resolution between any 
two adjacent states. The normalized phase histogram can be calculated as follows,  
 

Fig.2 Structure of the proposed 
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Similarly, the histogram of the instantaneous amplitude of the received signal, )(iHA , is 
evaluated over 12 subintervals. The normalized amplitude histogram can be calculated as 
follows, 
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C) Classification stage 
In the proposed algorithm, classification among the three QAM types of interest is performed 
in two stages. The first stage includes discrimination between QAM I and QAM III as one set 
and QAM II as a second set. This stage is based on counting the number of phases in the 

normalized phase histogram, )(ϕΦH& , as follows. The maximum element in the normalized 

phase histogram, )(ϕΦH& , is compared with a predefined threshold, T1. If the maximum 
element in the normalized phase histogram exceeds the threshold, it will be considered as a 
phase state. The maximum element and its two adjacent elements are nullified in order not to 
be counted once more. Then, the previous operation is applied to the next maximum element. 
Finally, the decision about the modulation type follows the rule shown in the following 
equation. 
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where P is the number of the elements in the normalized phase histogram that exceed the 
threshold. 
 
As a result QAM II can be distinguished from QAM I and QAM III. The second stage which 
is concerned with the discrimination between QAM I and QAM III is accomplished using the 
normalized amplitude histogram, )(aHA

& , as follows. The maximum element in the normalized 

amplitude histogram, )(aHA
& , is compared with a predefined threshold, T2. If the maximum 

element in the normalized amplitude histogram exceeds such threshold, it will be considered 
an amplitude state. The maximum element and its two adjacent elements are nullified in order 
not to be counted once more. Then, the previous operation is applied to the next maximum 
element. Finally, the decision about the modulation type follows the rule shown in the 
following equation. 
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where A is the number of the elements in the normalized amplitude histogram that exceed the 
threshold. 
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4. Thresholds Determination and Performance Evaluation 
 
In this algorithm, it is required to determine two threshold values; 1) phase threshold, T1, used 
in the normalized phase histogram and 2) amplitude threshold T2, used in the normalized 
amplitude histogram. Thresholds determination is obtained from 100 realizations, each with 
2048 samples, for each type of interest at the SNR of 20 and 15 dB. The QAM signals are 
generated with symbol rate of 10 kHz and a sampling rate of 100 kHz. A white Gaussian 
noise with power spectral density of N0/2 is simulated and added to the signal.  The fading 
effect, F, can be generated as the product of a random variable having Rayleigh distribution 
and the exponential of a uniformly distributed random variable [7]. It is assumed that the 
fading effect does not cause a significant variation of the channel gain over the signal frame 
considered in the proposed algorithm. 
 
The SNR here is defined as the ratio of the received faded signal power to the noise power 
within the signal bandwidth. The normalized phase and amplitude histograms of the 100 
realizations are trained along the interval [0, 1]. The optimum threshold is the value that 
yields the highest average success rate over each type of interest at SNR of 20 and 15 dB. 
 
 
Optimum thresholds 
The results associated with the determination and optimization of the phase and the amplitude 
thresholds are presented in Fig. 3 and Fig. 4, respectively. These figures show the overall 
success rate over different SNRs (20 and 15 dB) at different threshold values. Fig. 3 contains 
three curves: 1) the dashed curve represents the average success rate for the QAM-16 types 
that has eight phase states (QAM I and QAM III), 2) the dotted curve represents the average 
success rate for the QAM-16 type that has twelve phase states (QAM II), and 3) the solid 
curve represents the overall average success rate. Fig. 4 shows the overall success rate over 
different SNRs (20 and 15 dB) at different threshold values. The figure contains three curves: 
1) the dashed curve represents the average success rate for the QAM-16 type that has two 
amplitude states (QAM I), 2) the dotted curve represents the average success rate for the 
QAM-16 type that has four amplitude states (QAM III), and 3) the solid curve represents the 
overall average success rate. 
 



Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 SP - 7 - 
 

7

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Threshold

O
ve

ra
ll 

S
uc

ce
ss

 R
at

e 

8-phases 
12-phases 
8- & 12-phases 

 
Fig. 3 Dependence of overall success rates for QAM-16 signals 

on phase threshold values 
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Fig. 4 Dependence of overall success rates for QAM-16 signals 

on amplitude threshold values 
 
 
From Fig. 3, it is clear that the optimum phase threshold value, T1, for the discrimination 
between QAM I and QAM III as one set and QAM II as another set is 0.3. This threshold 
achieves an overall success rate > 98.00 %. From Fig. 4, it is clear that the optimum 
amplitude threshold value, T2, for the discrimination between QAM I and QAM III, based on 
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the number of amplitude states, lies in the interval [0.43, 0.44]. This threshold achieves an 
overall success rate > 99.00 % and a success rate greater than 98.50 % for each set. 
The evaluation of the proposed algorithm is taken from 1000 different realizations each with 
2048 samples. All the results associated with the evaluation of the proposed method for QAM 
classification are presented in Table 2 and Table 3 for SNR of 20 and 15 respectively. 
 

 
Table 2: Confusion matrix for the QAM-16 classifier at SNR = 20 dB 

Deduced Modulation Type Simulated Modulation 
Type QAM I QAM II QAM III 

QAM I 100 % - - 

QAM II - 100 % - 

QAM III - - 100 % 
 
 

Table 3: Confusion matrix for the QAM-16 classifier at SNR =15 dB 
Deduced Modulation Type Simulated Modulation 

Type QAM I QAM II QAM III 

QAM I 91.01 % 0.00 % 8.99 % 

QAM II 0.10 % 99.20 % 0.70 % 

QAM III 1.3 % 0.10 % 98.60 % 
 
 
From the results shown in table 2 and table 3, it is clear that all digital modulation types of 
interest have been correctly classified with a success rate 100 % at SNR = 20 dB and a 
success rate > 91 % at SNR = 15 dB. The proposed classifier is tested at lower value of SNR 
(< 15 dB). The  results show that at lower values of SNR (14 dB) the proposed classifier can 
discriminate between QAM I and QAM III types with a low success rate but gives a high 
success rate for QAM II as shown in table 4. Table 5 shows the overall success rates for the 
proposed classifier at different values of SNR. The overall success rate is calculated as the 
average of the success rates of the modulation types of interest. It can be shown that for an 
SNR < 13 dB, the performance of the proposed classifier begins to degrade. Also, it is worth 
noting that QAM III is the best modulation type from the point of view of communication. 
 

 
Table 4: Confusion matrix for the QAM-16 classifier at SNR =14 dB 

Deduced Modulation Type Simulated Modulation 
Type QAM I QAM II QAM III 

QAM I 87.91 % 0.40 % 11.69 % 

QAM II 0.00 % 99.30 % 0.70 % 

QAM III 2.20 % 0.30 % 97.50 % 
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Table 5: Overall success rate at different SNR’s 

SNR [dB] Overall Success Rate 
(%) 

20 100 
15 96.27 
14 94.90 
13 82.35 
12 52.81 
11 37.66 
10 33.63 

 
 
 
 
Fig. 5 shows the amplitude histograms and the phase histograms of each signal of interest 
(QAM I, QAM II, and QAM III) at SNR=10 dB, each with 2048 samples. The functional flow 
chart for the proposed classifier is shown in Fig. 6.  
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Fig. 5 a) Amplitude histograms, b) Phase histograms of the received QAM I, QAM II, and 
QAM III signals at SNR=10 dB 
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Fig. 6 The functional flow chart for the proposed 
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5. Conclusions 
 
In this paper, an algorithm for automatic modulation classification of 16-ary Quadrature 
Amplitude Modulated (QAM-16) signals has been presented. The algorithm has taken into 
consideration the problems due to channel impairments such as slow fading and noise. The 
proposed algorithm has shown good classification results and a robust behavior against the 
mentioned impairments. We have successfully solved the problem for three different 
modulation types. The algorithm seems easily extendable to include higher levels (probably 
with some small modifications of the key features extraction and the classification stages). 
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