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Abstract:

The transient response of a square strip loop antenna is investigated using the singularity
expansion method (SEM). The required natural modes of the loop are obtained to good
approximation using the finite difference time domain (FDTD) method together with
Prony's method. In order to generate a certain mode, a plane wave is used to excite the
loop antenna with both a frequency near to the natural loop mode (resonance) frequency
and with a spatial distribution approximating the mode loop current. The transient
response of a loop is studied for an incident short damped sinusoidal plane wave,
representing a high power microwave pulse, with different frequencies of the incident
wave.
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1. Introduction:

Investigation of the transient response of antennas is important in studying EMP effects,
high power microwave weapons, localized waves, ultra-wideband communication and
radar systems, EMP sensors ,.etc [1-6]. Recently, attention has been given to the
different aspects of high power microwave weapons, their effects on different electronic
systems, methods of protection, methods of measurement and standards [7-15].
Analysis of the transient response of different types of antennas has been implemented
using time domain integral equations (IE), frequency domain IE together with Fourier
transform, SEM, FDTD, in addition to high frequency techniques such as time domain
physical optics, time domain geometric theory of diffraction and time domain pulsed
plane waves [16-22].
The SEM has the advantage that once the antenna natural modes are obtained one can
solve different excitation problems in a simple and fast way using a few numbers of
natural modes [22]. Such transient problems include exciting the antenna with different
waveforms (either as a transmitting antenna or a receiving one) and with different
angles of incidence of a plane wave. The solution is particularly simple after the early
time period when the incident wave has traversed the antenna.
    The natural modes complex frequencies correspond to the resonant modes of the
antenna with damping factors accounting for antenna radiation during current
oscillation. However, obtaining the natural modes is usually cumbersome, based on
solving homogenous integral equations numerically and searching for the complex
natural frequencies [23]. The natural modes of the circular, elliptic and polygonal loops
were investigated [24-26].
   Recently, the basic natural modes of the dipole antenna having minimum damping,
which are required for solving transient problems, were obtained in a simple way by
using the FDTD method [27]. The modes were obtained by exciting the antenna with a
transient plane wave containing a frequency spectrum concentrated near the frequency
of the required mode and with a spatial field distribution similar to that of the required
mode current. After the transient excitation has died out, the excited antenna oscillates
in the intended mode with an exponentially damped sinusoidal waveform, which is used
to find the mode complex frequency. Once the antenna modes have been obtained, it is
straight forward and simple to obtain the transient response of the antenna to different
excitation waveforms and different incidence angles.
This method is applied in the present work to the square strip loop antenna. When
exciting the loop to find the modes, modes other than the required mode may also be
excited with a small amplitude, thus Prony's method is used to separate the damped
sinusoidal waveforms constituting the transient waveform, which correspond to
different modes. The transient response of the loop is then investigated for short pulse
waves resembling high power microwaves with different frequencies. The results are
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compared with a purely FDTD solution and the results are found to agree reasonably.

2. The SEM method for loop antenna

The electric field integral equation for the current distribution I(p) on the loop antenna
 with exciting electric field Ei (tangential to the loop perimeter) is [28]

i
tt EsIL 0ε−=                                                                                        (1)

wheret is a tangential operator given by [23, 28]
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where G is given by
G= exp(-sR/c)/(4 R)                                                                            (3)
The operators   and  ' operate on the observation point r and the source point r',
respectively, and the integration is performed over the loop perimeter p'. s is the Laplace
transform variable, c is the speed of light, 0ε  is the free space permittivity and R is the
distance between a current point at p' and an observation point at p on the loop surface.
The natural modes current distribution on the loop antenna, is nearly sinusoidal with N
full cycles for mode N [26] (similar to the current distribution at the resonant
frequencies of the loop antenna). For a loop antenna lying in the x-z plane with
perimeter 2L we thus assume the model current distribution for mode N along the
perimeter p (constituting x- and z- directions) to be:
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where (p = zero) is at the center of an x- directed arm.
The complex natural frequency sn  of mode n is given by
sn = j wn - nσ                                                                                                    (5)
where the damping factor is nσ  and j is the imaginary unit. The complex natural
frequencies should be obtained numerically.
 For an incident transient wave on a loop, the transient excited current on the loop can be
obtained in SEM method mainly in terms of the natural modes of the loop, with
additional polynomial and entire functions of s, whose contributions are usually
neglected. The Laplace transform of the excited current is given by [23, 28]
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where the summation is over the complex frequencies sn and their complex conjugates,
and the operator:
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dsdLL /' =
and the scalar product is defined by

                                                                     (7)

The Laplace transform of the excited current thus takes the form
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where cn is the mode coupling coefficient, given for the thin wire natural modes by
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And nB  is the mode normalization constant
>=< nnn IILB ,'                                                                                             (10)

The normalization constant Bn is evaluated at s=sn, thus when considering the conjugate
complex frequency sn

* the normalization constant become Bn
* .

For a normally incident uniform plane wave on the plane of the loop with the electric
field oriented in the z- direction, the mode coupling coefficient becomes
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where the length of the loop arm is L/2 and the z- directed arm starts at p=L/4. The
factor 2 appears due to integration on both arms oriented in the z- direction.
For the dipole antenna the value of Bn can be obtained analytically for thin dipoles [23,
28]. For the loop antenna this value may be evaluated numerically. The investigated
loop is a square strip loop to simplify the required calculations and to make simple
comparison with FDTD solution.  For this purpose we need the detailed from the
operator   at the different loop  arms. For the current distribution given by Eqn.(4), and
for an observation point on arms 2 or 4 in x- direction, the tangential operator becomes
as follows due to the four source arms (arms 1 and 3 are in the z- direction):
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For an observation point on arms 1 or 3 in the z- direction,
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In order to obtain the operator
S
LL

∂
∂

='  we use the form of G in Eqn.(3), thus the

derivative of the term containing G becomes
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The derivative of the term containing s2 G becomes
d (s2G)/ds = -s2 exp(-sR/c)/(4 c)+2s exp(-sR/c)/(4 R)                                           (15)
Due to the current symmetry on parallel arms for odd modes, the integral of the scalar
product in Bn , Eqns.(10, 7), needs to be performed on only one of each two parallel
arms and this result is doubled.
 When making the numerical integration for Bn  an equivalent cylindrical wire of radius
a is used instead of the strip wire of the loop. For the self element (observation point at
the same source segment l), the integral of G becomes  [29]
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3. The loop current for an incident plane wave with damped sinusoidal time
dependence
Consider an incident plane wave with damped sinusoidal time dependence and whose
electric field is oriented in the z- direction, given by

t
K

ketwEtE σ−= )cos(2)( 0                                                                              (17)
 where wk is the radian frequency and kσ  is the damping constant of the incident wave.
The Laplace transform of E(t) is (with E0=1)

                                                                              (18)

 where * denotes the complex conjugate and
a = j wk - k                                                                                              (19)
The damped sinusoidal wave can be used to represent an high power microwave signal.
The induced current due to Ez , thus equals
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To obtain the time dependence of the current, the inverse Laplace transform is
performed. By using partial fractions,
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The required inverse Laplace transform for a general term in eqn.(21) is thus
bte

bs
L =

−
− 11                                                                                                   (22)

here b = si  or ai  .Thus the transient response becomes

                                                                                                    (23)
The exponential terms including si represent natural oscillations of the loop, whereas
those including ai represent forced oscillations.

4. Calculating the natural modes of the loop using FDTD Method
   The FDTD method is used to find both the natural loop modes and also to check the
loop current for an incident transient plane wave. The conventional Yee algorithm is
used to obtain the scattered field in free space [18, 19]. Liao absorbing boundary
conditions are used to enclose the computation domain.

Excitation of the natural modes of the loop
The natural damped sinusoidal modes of the loop take the form
In(t) = io cos( n t) exp(- n t)                                                                            (24)
where n and  n are represented in Eqn.(5). The main modes required for the SEM
solution are the least damped modes [24]. Other natural modes exist with higher
damping factors, but such modes are not relevant in the SEM.
To excite a certain mode 'n' on the loop, a plane wave is used to excite the loop with
approximate frequency and spatial distribution of field along the loop arm parallel to the
electric field as the mode current required to be excited, having the form

                                                           (25)

In order to limit the period of the incident plane wave, few cycles of the natural
frequency n are used, modulated by a half sine wave of a lower frequency ( n /8  in
Eqn.(25)), Fig.(1a), in order to make the field continuous with time, thus the spectrum
of this wave becomes concentrated around n, so the other natural modes are only
negligibly excited. After the termination of this excitation, the current oscillates on the
loop mainly with the intended natural mode.
When the loop is excited in a high order mode, more than one mode may be excited.
The damped sinusoidal waveforms of the modes were separated using Prony's method
which is used to separate terms of the form )( nnje αω −  with different complex frequencies
in a certain transient waveform.
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Fig. (1a) incident waveform to excite the first mode
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Fig. (1-b) The  current  at the center of the arm parallel to the incident electric field
versus time (first mode) when excited by a plane wave with the waveform of Fig.(1a)

5. Results and discussion

5.1 The natural modes of the loop
Fig.(1b) shows the  variation of the excited current, at the center of an arm parallel to
the incident electric field, versus time using the exciting waveform of Fig. (1a), where
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the frequency of the incident plane wave is nearly equal to the frequency of the first
natural mode, and the direction of the incident plane wave is normal to the plane of the
loop. The forced excitation due to the incident wave terminates after 4 cycles then the
damped oscillation of the first natural mode begins. The loop used is a strip loop whose
mean arm length is 73 cells and strip width of 3 cells. The charts which are used to
obtain the equivalent radius of a strip dipole are used approximately to obtain the
equivalent radius of the strip in the loop antenna [30]. With strip thickness to width ratio
of 1/3, the ratio of the equivalent cylindrical dipole radius to strip width is 0.38. With
the loop of 3 cells wide, its equivalent radius is 1.14 cells with cell length

mxzx 410016.2 −=∆=∆
For the first natural mode the loop perimeter is nearly equal to one wavelength, which
corresponds to a frequency of 5 GHz. The time step used equals the cell length divided
by c*sqrt(3) to satisfy the stability condition [18, 19].
An incident plane wave parallel to one arm produces a first mode with two half cycles
on the loop perimeter with maxima at the centers of the arms parallel to the incident
electric field and their currens are  in the same direction. Fig (2) shows the current
distribution of the first mode on the four loop arms. It is to be noted that the three cells
at the ends of each arm overlap with the adjacent orthogonal arm, thus the current
changes its direction at these cells.  If the current distributions on the four arms are
connected together, the resulting current on the loop perimeter becomes continuous and
nearly sinusoidal. Due to the excitation by a plane wave incident in the direction normal
to the loop plane with electric field parallel to one arm, only the odd modes are excited
since the Nth mode current has 2N half cycles, and for even modes the currents in
parallel arms have reversed directions , thus their excitation coefficients are zero,
Eqn.(11).
Table (1) shows the normalized complex resonance frequencies of the first three odd
modes where the normalized values are defined as

p
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n C

P
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ω
ω

∗
∗ =

Π

                                                                                                                        (26)
where

corresponds to the radian frequency when the loop perimeter P is considered  to be
one wavelength. In Ref. 24 the ratio of the loop perimeter to radius is identified by

the parameter
r
pln2=Ω . The results for the present case are shown in table 1 with

=11.1 . The results of [24] are also shown at the same value of   and the results of
[26] are for a square loop with =12.8 . The results show reasonable agreement.

p1ω
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Fig.(2) The current distribution of the first mode on the four arms of the loop

Table 1. Normalized complex resonance frequencies for odd modes of the loop

Mode n 1 3 5
fn/f1p 1.198 3.12 5.22

nσ / 1p -0.172 -0.215 -0.902
fn/f1p [24] 1.1 3.07

nσ / 1p [24] -0.13 -0.255
fn/f1p [26] 1.094 3.15

nσ / 1p [26] -0.098 -0.23

Table 2 shows the normalization constants of modes compared with those of a dipole of
half the loop length (half wavelength dipole). The dipole modes normalization constants
for thin dipoles are given by [23, 28]:
Bn )

4
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c
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                                                                                                                           (27)
where
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where l and r are the dipole length and radius, respectively.

Table 2 Modes normalization constants for the loop compared with those of the dipole
Mode n 1 3
loop 2.6e-9 + j 1e-8 5.8e-9 + j 2.08e-8
dipole j 0.8e-8 j 2.42e-8

The results show that the normalization constants of the loop modes are nearly equal to
the corresponding ones for the dipole, although the loop perimeter is double the dipole
length. This behavior is found to be due to the effect of the orthogonal arms.

5.2 Loop response to an incident damped sinusoidal plane wave
High power microwave weapons use few cycles of microwave frequency in order to
penetrate devices operating at microwave frequencies. Here we use a damped sinusoidal
incident plane wave to investigate such conditions. In order to investigate loop response
to an incident plane wave of short period (wide spectrum), we use a large damping
constant k=1.9*1010, which equals the inverse of the damping time constant of the
sinusoidal wave envelope. If the frequency of the sinusoid is low, the high damping
constant makes the waveform to be nearly an impulse.
The loop with the above mentioned dimensions (with first mode frequency near 6GHz)
is considered with incident plane waves of different frequencies, normally incident on
the loop plane. Figures (3, 4), show the loop responses with fk=5GHz and 2 GHz. Fig.
(3) shows a comparison between the solution obtained using the present SEM method
and the solution using a FDTD method, and reasonable agreement is found. The first
natural mode of the loop is clearly dominant in Figs.(3, 4) because the excitation
frequencies are far from the frequencies of the higher order natural modes. Once the
loop modes are characterized, the responses are obtained in nearly no time and for
different incident waveforms or exciting voltages.
Comparison of the responses of the loop with the responses of half wavelength dipole
resonating at nearly the resonance frequency of the loop [27] for the studied excitation
waveforms shows that the dipole response is higher by about 50%. This  near equality
can be explained by the nearly equal values of the modes normalization constants, table
2, and that the coupling coefficients are nearly the same because the coupling of the
incident field to a loop arm parallel to it is less than for the dipole because of its shorter
length, thus the two arms of the loop parallel to the incident electric lead to a coupling
coefficient nearly equal to that of the dipole.
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Fig. (3) The transient current at the center of the loop arm parallel to the incident
electric field when the loop is excited by a damped sinusoidal plane wave with

frequency 5GHz  (… FDTD method , __ SEM method )

Fig. (4) The transient  current  induced  at the center of the arm parallel to the incident
electric field versus time using SEM method, fk=2GHz
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6. Conclusion
The computationally efficient SEM method is used to investigate the transient response
of loop antenna using the natural complex frequencies of the loop. A FDTD approach
together with Prony's method is used to obtain the approximate complex natural modes
of the loop. The required modes normalization constants are obtained numerically. The
obtained natural modes are used to find the response of the loop to a highly damped
sinusoidal plane wave (resembling high power microwave pulse). The response of the
loop is found to be nearly equal to the response of a dipole with length equal to half the
loop perimeter.
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