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Abstract:

Neural network-based image registration using global image features is relatively a new
research subject and the schemes devised so far use a feedforward neural network to
find the geometrical transformation parameters. In this work, we propose to use a radia
basis function neural network instead of feedforward neural network to overcome
lengthy pre-registration training stage. This modification has been tested on a typical
neural network-based registration method using discrete cosine transformation features
in the presence of noise. The proposed scheme does not only speed up the training stage
enormously, but also increases the accuracy and robustness against additive white noise
owing to the better generalization ability of the radial basis function neural networks.
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1. I ntroduction:

Image registration is a procedure to determine the spatial best fit between two images
that overlap the same scene, and a fundamental stage in many image processing
applications such as medical image anaysis, remote sensing, image matching-based
vehicle guidence [1], [2] and super-resolution [3]. To register two images, a
transformation must be found so that each point in one image can be mapped to a point
in the second. Registration is often a complicated task and includes a wide range of
problems to deal with such as image distortions, scene dependency and determining a
suitable geometric tranformation model.

The most commonly used registration transformation is the affine transformation. In this
work, global affine tranformation that is composed of the Cartesian operations of a
scaling, a trandation, and a rotation is assumed. Correlation-based methods or
frequency domain methods are disadvantageous for this type of transformation when
computational complexity is concerned. On the other hand, local feature-based or
control points methods cannot be relied on when image is noisy or feature extraction is
problematic due to scene content.

Image registration based on neural networks is a relatively new approach and requires
further consideration and research. At the beginning, this approach was used in aligning
a set of landmark (control) points extracted from the images to be registered, such as
[4]. Later on, the approach was also employed in the schemes [5], [6] that extract global
iImage features and feed them into a feedforward neural network (FNN) to find the
affine transformation parameters. In [5], a FNN is used to estimate the affine
tranformation parameters of a test image with respect to a reference image. Discrete
cosine transform (DCT) features are extracted as inputs to the network and estimated
parameters are obtained at the output. In a pre-registration phase, extracted DCT
features form a set of trandated, rotated and scaled images of the same scene are
employed to train a FNN. Although their method gives fairly accurate results for noisy
iImages, its main drawback is the long period of iterative learning process of FNN. To
overcome such a lengthy pre-registration training stage, replacing the FNN with a radial
basis function neural network (RBF NN) is the fundemantal object of this work. The
proposed scheme here does not only speed up the training stage, but also increases the
accuracy and robustness against noise owing to the better generalization ability of RBF
NN.
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2. Radial Basis Function Neural Networks:

RBF neura networks with their structural simplicity and training efficiency are good
candidate to perform a nonlinear mapping between the input and output vector spaces.
RBF NN is a fully connected feedforward structure and consist of three layers namely,
an input layer, a single layer of nonlinear processing units, and an output layer. The
network structure is shown in Figure (1). Input layer is composed of input nodes that are
equal to the dimension of the input vector x. The output of the jth hidden neuron with
Gaussian transfer function can be calculated as

h =g leals (1)

where h; is the output of the jth neuron, xT A™* is an input vector, ¢c;T A™'is the jth
RBF center, s isthe center spread parameter which controls the width of the RBF, and

HH2 represents the Euclidean norm. The output of any neuron at the output layer of RBF
network is calculated as

K
Yi =_éWijhj (2

where w;; is the weight connecting hidden neuron j to output neuron i and k is the
number of hidden layer neurons.

The mapping properties of the RBF NN can be modified through the weights in the
output layer, the centers of the RBFs, and spread parameter of the Gaussian function.
The simplest form of RBF network training can be obtained with fixed number of
centers. If the number of centers is made equal to the number of input vectors, namely
exact RBF, then the error between the desired and actua network outputs for the
training data set will be equal to zero. In this work, exact RBF NN was used. The
number of RBF centers was made equal to the number of input vectors (e.g. 256, see
section 3).
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Input layer  Hiddenlayer  Output layer

Figure (1): Structure of RBF NN

3. Experimental Work and Results:

An aerial image of an urban area is used to produce a set of trandated, rotated and
scaled images. Table (1) shows the affine transformation parameters values used for this
purpose. A total of 256 images, each of which is 128 by 128 pixels size, were first
added with white Gaussian noise. The noisy images then underwent to DCT to obtain
frequecy domain coefficients. A region of 6 by 6 coefficients in the lowest frequency
band in the DCT plane was cut out and used as a feature vector for each affine
transformed image. A matrix of 35 by 256 (zero frequency coefficient is discarded)
coefficients was obtained and used to train an exact RBF NN. An optimal spread value
of the transfer function for the neurons was found empirically. To evauate the
performance of the RBF NN-based registration method, 81 test images with the
transformation parameter values given in Table (1) was also created and added with
noise of the same strength as that in the training set. Features from the test images were
obtained exactly in the same manner as explained for training data. Mean of the absolute
value of registration errors resulted by the network was computed for each affine
parameter, and given in Table (2). Experiments were carried out for noise-free and noisy
Images at two different signal to noise ratios (SNR), namely, 20 dB and 5 dB.

For a comparison, mean errors from a FNN with a 20 neurons in one hidden layer by
using the same training and test data were also computed and given in the Table (3). The
FNN had a tangent-sigmoid transfer function for the hidden layer neurons and a linear
function for the output layer neurons, and was trained using the Levenberg-Marquardt
method. In order the FNN to learn the training data reasonably well, we had to repeat
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the training phase many times until the network gave both a small output training error
and a small registration error for the test data. During the time consuming experimental
work with the FNN severa training attempts failed due to the nonconverged or wrongly
converged networks. The registration error results given in Table (3) were obtained with
the best networks found after a reasonably persistent search effort.

Table (1): Affine transformation parameter values used in experiments

transform parameter | values used for training set | values used for test set
scale 0.9, 0.965, 1.035, 1.1 0.93, 1, 1.07

rotation -5,-2,2,5 (degrees) -3,1,4 (degrees)
vertical trandation -5,-2,2,5 (pixels) -4,0,3 (pixels)
horizontal trandation |-5,-2,2,5 (pixels) -3,1,4 (pixels)

Table (2): Mean absolute registration errors of RBF NN-based scheme

transform parameter Noise-free 20 dB SNR 5dB SNR
scale 0.0002 0.0006 0.002
rotation 0.014 0.06 0.18
vertical trandation 0.007 0.03 0.10
horizontal trandation 0.021 0.05 0.15

Table (3): Mean absolute registration errors of FNN-based scheme

transform parameter Noise-free 20dB SNR 5dB SNR
scale 0.0015 0.0023 0.005
rotation 0.046 0.09 0.3

vertical trandation 0.03 0.06 0.15
horizontal trandation 0.05 0.09 0.3

The experimental results clearly show that the RBF NN-based registration scheme is
accurate and more robust to noise, especialy in estimating the scale and rotation
parameters of the affine transformation. For images with relatively high SNR, this
performance difference becomes more apparent in favour of the RBF NN-based
registration scheme. With the data size chosen in the experiments, training a RBF NN
takes much less than one second on an average personal computer. On the other hand,
training a FNN with the same data takes from many seconds to several minutes.
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4. Conclusions:

This paper proposes to use a RBF NN in NN-based image registration approach fed by
global image features such as DCT coefficients. That schemes, only a few known so far,
al use a FNN to estimate the registration parameters. On the other hand, It is shown
here, experimentally, that employing a RBF NN instead of FNN to estimate affine
registration parameters gives more accurate and robust results in the presence of noise.
This performance superiority of the RBF NN-based scheme can be accounted for its
better affine transformation generalizations over the parameter space. More importantly,
the proposed scheme is fast and easy to implement as a result of avoiding the
disadvantages of FNN-based scheme, such as lengthy iterations and nonconvergence
problem encountered during the network training stage. Only parameter that has to be
determined to well-train an exact RBF NN is the spread parameter of the Gaussian
function. Although there is an optimal spread value depending on the training data for a
network in the training stage, the experiments aso show that any suboptimal spread
value can be easily estimated and used without decreasing the performance drastically.
The proposed scheme can also be applied to any other image features than the DCT
coefficients. As a future work, developing schemes to use RBF NN to estimate
registration parameters from a much wider range will be investigated and their
performance tests will be carried on.
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