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Abstract:

This paper describes an approach to identify and change the measurement weights used
in Weight Least Square (WLS) estimation method employed in State Estimation (SE).
In practice, the individual measurement is assigned with their own weight factor based
on technical experience by the engineers. However, uncertainty in analog measurements
could occur in a real time system. Those measurements that are assigned with high
weighting factor need not be a good data. The method of Modified covariance (MC)
proposed in this paper can identify and change the measurement weights of the bad
measurements if the related measurement is assigned with high weight factors.
Simulated measurement data and state estimation results are used as historical data. The
proposed method is tested on IEEE 24-bus network and SE provides reliable estimation.
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1. Introduction:

 State Estimation (SE) is becoming increasingly important in modern energy
management of power systems. Particularly with global deregulation of the power
industry, power system state estimation has gained an even greater importance as a real-
time monitoring tool [1], [2]. It is becoming a part and parcel of new energy control
centre that are being established for large scale power systems. Its purpose is to
establish a reliable and complete real time data base for on-line monitoring and control.
 The complication of the interconnected power system due to new possibilities
associated with open access and the operation of transmission networks, will cause the
patterns of power flow in a deregulated power system become less predictable
compared to the integrated systems of the past [3]. Hence, to achieve a more secure and
economic operation, it is vital for utility operators to be properly informed of the
operating condition or state of the power system.
 The state of the power system is described by a collection of voltage vectors for a
given network topology and parameters. Comprehensive discussion of the state of the
art in electric power system state estimation is discussed in [1], [4] and [5]. The state
variables obtained from SE is relying on the set of measurements that collected via the
Supervisory Control and Data Acquisition (SCADA) system. The estimation process
can be carried out through two functions of stochastic approach namely state forecasting
and state filtering. State forecasting uses the past information while state filtering
determines the optimal estimate by considering all available measurements and
predicted states.
 In state filtering various numerical methods of SE are presented in [1] and [6]-
[14]. The objective of those methods is to have a robust numerical estimator, which can
suitably improve the gain matrix.  Recently, Artificial Intelligent system such as Fuzzy
and Neural Network is started to use in SE [15]-[17]. However those techniques are not
yet tested on the large scale power system.
 Most of the approaches in SE is valid only for over-determine systems. Sufficient
measurements are necessary to use those methods. However, in real time environment,
some measurements are inconsistent in producing a true reading. The uncertainty in
analog measurements could occur because of the combination between systematic error
and random error [18]. Large systematic errors can be reduced by using appropriate
calibration while the random errors will always remain and will influence the accuracy
of estimated state [18].  Nevertheless, the small random errors can be filtered out using a
proper weight to the set of measurements. An accurate measurement is weighted more
than a less accurate. Decisions to select the good measurements are always based on the
experience of engineers. Meanwhile, the measurement weights are assigned based on
some assumed accuracy of the measuring instruments.
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 However, the measurements that are assigned with high weightage need not be a
good data. All the measurements need to be scanned first before processing SE.
Typically most of the commercial software perform a pre-screening process to check
whether the measured values are within the reasonability limit or not. The margin of the
limitations set in the SCADA subsystem is typically around 10 %. However, for a large
scale power system the pre-screening process is not fully screen or filter. The problem
of accuracy will occur if the good measurements with a high weighting factor suddenly
turn to bad measurements. An improved algorithm, which adaptively updates
measurement variances, is presented in [19] and [20]. The sensitivity relationship
between the measurement variances and the covariance matrix of their residuals was
used for this purpose. However, the requirement of all the elements in the sensitivity
matrix however could increase the cost since it calls for very large memory. In this
paper a new approach to filter and forecast the state variable is proposed. This method
uses Autoregressive (AR) and is known as Modified Covariance (MC) method.

2. Review of Weight Least Square:

 Most SE programs in practical use are formulated as over-determined systems of
nonlinear equations and solved as Weight Least Square (WLS) problems [1], [9]. In
WLS method the measured quantities are represented as sum of true values and errors as

ezz true += (2.1)
Hxzzze true −=−=           (2.2)

where ‘e’ represents the errors between the actual measurements z and the true values
ztrue (Hx) of the measured quantities. ‘ x ’ is the true value of the state variables. The true
values cannot be determined, but their estimates x can be determined. The estimated
error is given by

)( xxHexHzzze −−=−=−=        (2.3)
The objective function to be minimized is
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where ‘w’ is the weighting factor for the respective measurement. The standard
deviation, σj, can be derived from the defined instrument errors on potential transformer
(PT), current transformer (CT), transducer (XDUCER), Analog to Digital Converters
(A/D) and the number of standard deviations assigned to the maximum possible error
for a measurement (SIGMA) [21]. Thus,
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 Typically SIGMA is equivalent to 3.0 which determine that three standard
deviations include 99.74 % of the area under a normal distribution curve.
 The best estimate is the one which makes the objective function ‘f’ to take on its
minimum value. This is achieved when
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The partial derivates with respect to state variables are the elements of the Jacobian
matrix. Using the matrix notations of equation (2.2) in equation (2.5) yields
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Newton’s method is used to solve this equation. The function h(x) has to be linearised at
the initial value x(0). Thus
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Simplifying further, in kth iteration, state variables are calculated as shown in equation
(2.8) [22].
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 If the gain matrix, G, is non-singular, equation (2.8) gives estimated state
variables. If there is lack of sufficient measurements, then G is not invertable.

(2.8)
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2.1 Bad Data Identification and Elimination

 Methods used for detecting and identifying bad data are discussed in details in
[10],[22]-[25]. The true measurement error is unknown, but it can be replaced in the
objective function by an estimate. The objective function itself is a random variable
which has a probability distribution area. In order to use those areas, we need to know
the mean value of the objective function. Equation (2.9) expresses that the expected
value of objective function is numerically equal to the number of degrees of freedom. It
is also called the measurement redundancy scheme.
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R′ in the above equation is a measurement error matrix, whose diagonal terms are the
error variances. It can be obtained from equation (2.10).

T1' HGHRR −−=       (2.10)
 The weighted square sum of object function has the Chi-square,χ2 ,distribution. If
the sum of weighted squares as calculated from the equation (2.4) satisfies the
inequality )1()( 2

, αχ α −=< kf , then the estimated values are accepted as the final

estimates [10], [25]. If not, the variable with the largest standardized error ( )'
jjj Re is

eliminated and the states are re-estimated.

3. Stochastic Methods:

 State estimation problems can be classified as over-determined, completely
determined or under-determined depending on whether Nm > Ns, Ns = Nm and Nm < Ns
respectively where Nm is the number of measurements and Ns is the number of state
variables. A unique solution is possible only for over-determined and completely
determined systems. SE techniques are traditionally performed on an over-determined
system where the number of rows in H exceeds the number of columns. If the
covariances of the measurements are known, it can be used to place different weights on
the various measurements. In practice the weights are assigned by based on experience
and technical knowledge of engineers. However, if the measurement covariances are
unknown, then R is simply replaced by an identity matrix, i.e. uniform weights are
assigned for all the measurements.
 However, the technical challenge in SE is to solve under-determined systems of
equations. In these systems, a unique solution may not exist, that is it is not solvable or
SE is known as unobservable. However this can be solved if we add more state
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information.
 As in state forecasting, it is possible to use previous data or historical data. The
insufficient number of measurement can be compensated if a proper method is
proposed. Therefore in this paper the MC method is used in order to forecast the data
and at the same time filtering the logical weighting factor that has been assigned to the
trusted measurements.

3.1 Autoregressive Method

 In  a m-th order AR process the signal x(n) is described by a weighted sum of
preceding signal values plus an independent identically distributed noise
signal, )(nε with variances σ2:

∑
=

−+=
m

k
mm knxkanxn

1
)()()()(ε      (3.1)

where am (k) are the prediction coefficients with 0 k m 1, m =1,2,…,p.

 The well known AR methods such as Yule Walker method, Burg method,
Covariance method and also MC is aiming for minimizing the sum squares of the
forward and backward prediction error.

−+ += mmm εεε        (3.2)
 Although the aim is same, those methods have their own advantages and
disadvantages [26]. Due to the ability to minimize the sum of the squares errors in
randomly, the MC is selected as the AR method in this paper.

 3.1.1 Modified Covariance method

 To derive the estimator, suppose that we are given the data x(n), n=0,1,…, N-1,
and let us consider the forward and backward linear prediction estimates of order m , as
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and the corresponding forward and backward errors fm(n) and gm(n) as
)()()( nxnxnfm −= and )()()( mnxmnxngm −−−= . The least square error is
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To find the prediction coefficients that minimize mε , the derivative of mε  with respect
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Substituting equation (3.3) to (3.5) into equation (3.6) and simplifying we find that the
normal equation for the MC method are given by

[ ]

[ ]),()0,(

)(),(),(
1

lmmclc

kalmkmcklc

xx

m

k
mxx

−+−=

−−+∑
=      (3.7)

where ∑
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x lnxknxklc  and known as autocorrelation coefficients, which

dependent only on the absolute value of the difference between l and k, i.e.
( )klcklc xx −=),( . However the autocorrelation matrix is not Toeplitz but it is

symmetric.
 In this paper, number of sample of previous data of measurements is taken from
simulated results of load flow on the IEEE 24-bus network. The number of order is
chosen is 2. Sample of voltage data at bus 2 is shown in Figure (1). All the measured
quantities are taken for each bus.
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Figure (1): Voltage at bus 2 for 24 hours data.

4. Component of SE

 The complete scheme that involved in SE algorithm is shown in Figure (2). The
Measurement Data Plausibility Checking is used to detect and separate out all
measurements with some apparent error in order to avoid any heavy distortion of the
estimated network state due to completely wrong measurements. The proposed MC
algorithm will is applied in this component. It will filter and forecast all the
measurements prior to using them as input for SE. Those measurements with high
weightage will be checked for its accuracy. If the related measurement shows an error
more than 5%, the weightage will be reduced to cater with its accuracy.
 The function of a topology processor is to deliver an updated, consistent model of
the system in terms of topology and measurements, based on known system connections
and parameters and real-time SCADA input. It must divide the network into electrical
islands if necessary, provide the necessary system parameters, and place measurements
in their topological locations. It may also serve other important but less essential
functions, such as posting warnings for circuit breaker and/or isolator.
 Instead of numerical and hybrid methods, topological is the main approache for
Observability [27]. After the topology of the network is checked, the network is checked
for its observability. Generally, a region of the network is called observable, if the
measurements in the system provide enough (non-redundant) information to estimate
the state of that part of the network.
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Figure (2): The scheme that involved in SE algorithm.

5. Numerical Study:

 For case study IEEE 24-bus network is chosen. Three case studies are carried out.
In Case 1, under-determined system is tested, while Case 2 will consider a not-
convergent system due to the incorrect assigning of weight factor. In Case 3 the system
is tested for detecting the weighting factor for erroneous measurements assigned with
high weighting.

Case 1
 The number of states is 47 while number of measurements is 41. As per definition
the system is known as under-determined system. The network becomes unobservable.
The proposed method is able to forecast and use the forecasted value as an input for SE.

§ Eliminate the erroneous
measurements.

§ AR method is proposed
in this stage to identify
and reduce the
weightage factor for
erroneous
measurements which
had assigned as trusted
measurement.

§ Checks and corrects the
network topology for
any change that has
been made before
proceed to the next
process.

§ If the topology is wrong
the SE is no longer
accurate.

Measurements
Data Plausibility

Checking

Topology
Processing

Observability

State Estimation

§ Checks the observability
of the network.

§ The network needs to
correct if the network is
unobservable.

§ The historical data or
Pseudo-measurements
are used to repair the
regions that identified as
not observable.

§ If the network is
observable the process
continues to the SE
process.

§ The bad measurements
are detected, identified
and eliminated through
Bad Data Processing.

§ If no bad measurements
are identified the SE
process is considered
completed.
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The proposed method is able to forecast and use the forecasted value as an input for SE.
Table (1) shows the value of actual, forecasted and estimated values.

Table (1): The actual, forecasted and estimated values of state variables – Case 1
Actual Modified Cov. Estimated
V (pu) θ (rad) V (pu) θ (rad) V (pu) θ (rad)
1.035 0.000 1.036 0.000 1.036 0.000
1.035 -0.031 1.036 -0.031 1.036 -0.032
0.961 -0.213 0.962 -0.213 0.962 -0.203
0.968 -0.216 0.969 -0.215 0.969 -0.216
0.983 -0.176 0.984 -0.175 0.984 -0.166
0.965 -0.306 0.966 -0.305 0.966 -0.296
1.025 -0.324 1.026 -0.323 1.026 -0.314
0.972 -0.377 0.973 -0.376 0.973 -0.367
0.967 -0.290 0.968 -0.289 0.968 -0.291
0.984 -0.301 0.985 -0.300 0.985 -0.291
0.965 -0.250 0.966 -0.249 0.966 -0.240
0.971 -0.225 0.972 -0.224 0.972 -0.215
0.965 -0.247 0.966 -0.246 0.966 -0.237
0.980 -0.207 0.981 -0.206 0.981 -0.197
1.014 0.001 1.015 0.001 1.015 0.011
1.017 -0.020 1.018 -0.020 1.018 -0.010
1.038 0.054 1.039 0.055 1.039 0.064
1.050 0.076 1.051 0.076 1.051 0.086
1.022 -0.056 1.023 -0.056 1.023 -0.046
1.038 -0.050 1.039 -0.049 1.039 -0.040
1.050 0.093 1.051 0.094 1.051 0.103
1.050 0.191 1.051 0.192 1.051 0.201
1.050 -0.032 1.051 -0.032 1.051 -0.022
0.979 -0.078 0.980 -0.077 0.980 -0.068

 The average error in MC method is 0.069 % for the voltage magnitudes and 2.983
% for the voltage phase angles. The summary results of SE are shown in Table (2). The
SE runs twice in this case. The first estimate of SE gives an output of unobservable due
to Nm<Ns condition. The second estimate processes the input of SE taken from MC’s
output and the SE is successful to converge in 3 iterations with a tolerance of 0.001 and
Nm is equal to 148.
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Table (2): State Estimator summary results – Case 1

Case 2
 The convergence of SE normally relies on the tolerance, the number of
measurements and the weighting factors assigned to the individual measurements. In
this case study, the network is adjusted to be not converging by changing the weighting
the factors. In the first run of the SE, the result is not converging when the tolerance,
number of measurements and maximum number of iteration are 0.001, 117 and 50
respectively.
 When MC algorithm is introduced in the SE process, it is able to solve the
problem taking all the predicted values, increasing the number of measurements to 148
and the weighting factor also increased in number related with number of
measurements. The results of state variables obtained after estimated and forecasted are
depicted in Table (1).
 The average error in MC method is 0.069 % for the voltage magnitudes and 2.983
% for the voltage phase angles. The summary results of SE are shown in Table 3. The
SE is run twice in this case where for the first estimate SE gives an output of ‘not
converging’. The second estimate processes the input of SE taken from MC’s output
and the SE is successful in getting the results converged at iteration 3 for a tolerance of
0.001 and Nm of 148.

Table (3): State Estimator summary results – Case 2

Case 3
 In this case study, 5 bad measurements are introduced. The directions of P8, Q8,
P2-6 and Q5-10 are reversed, while reading of V9 increased to 1 pu. In the first run of
SE, the MC algorithm detected a few analog measurements with wrong readings
compared with forecasted value, typically more than 5 % error, as depicted in Table (4).
After changing the assigned weight factor for the identified measurements with lower
value, the SE result obtained are shown in Table (5). This shows that the program

Est.
No Weight sum of square, f

Chi-square distribution, 2
,akχ Iter.

1  - - Unobservable
2 8.3495 125.4584 3

Est.
No Weight sum of square, f

Chi-square distribution, 2
,akχ Iter.

1  - - Not converge
Iteration set to 50

2 8.3522 125.4584 3
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correctly detects, identifies and eliminates the measurements errors.

Table (4): MC’s result – Case 3

Analog measurements with more than 5% error
V9, P8, Q8, P2-6, Q5-10

Analog measurements considered bad and the weight
factor is high. V9

Table (5): State Estimation results – Case 3

Est.
No

Bad
Data Weight sum of square, f

Chi-square distribution, 2
,akχ

Iter.

1 Q5-10 1.34E+03 9.05E+01 11
2 V9 9.33E+02 8.94E+01 7
3 P2-6 5.69E+02 8.83E+01 7
4 Q8 2.61E+02 8.71E+01 7
5 P8 1.46E+02 8.60E+01 7
6 None 4.72E+00 8.48E+01 3

6. Conclusions:

The results of Case 1 and Case 2 clearly show that the observability and non converging
problems of SE can be solved if the MC method is added in SE process. Table (1)
depicted that the errors in voltage phase angles, between forecasted value and the
estimated value are small. Further, in Case 3, the results show that the proposed method
enables to list all the bad measurements that were initially assigned with high weight
factor. The results also show that the SE is capable to identify and eliminate the bad
measurements after the weight factor is reduced for those bad measurements with high
weight factor. Thus the strength of MC algorithm in the field of SE is established.
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Nomenclatures:

σ
χ2

e
w
z

G
H
Ns
Nm

ε

Standard Deviation
Chi-square
Error
Weighting Factor
Measurements
Gain
Jacobian Matrix
Number of states
Number of measurements
Least square error




