
Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE060 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

6th International Conference
on Electrical Engineering

ICEENG 2008

Walsh-functions pulse shaping in MSK-type signals.

By

Ibrahim N. Abu-Isbeih*

Abstract:

In this paper a new pulse shaping method in MSK-type signaling is proposed. The
proposed pulse shaping method is based on the Walsh functions, and is used to design
the optimum pulse shapes in MSK-type signaling. Simulation results show that the
proposed pulse shaping method attains improvement in spectral efficiency (i.e., bps/Hz)
over MSK, for the same channel bandwidth. The fractional out-of-band power is used to
compare the behavior of the system under the new proposed technique. As well, error
rate performance in such system is used in the evaluation of this work. The results
reveal that good improvement can be attained in spectral efficiency at the expense of
error rate performance when these functions are used. The results also reveal that the
channel employing MSK system must be as linear as possible for the transmission of
such signals.
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1. Introduction:

Several papers have been presented on various modulation schemes. It is very difficult to
say which modulation scheme is the best. The selection of a particular optimum
modulation technique depends upon the specific system configuration. In most
communication system designs, a general objective is to use as efficiently as possible the
resources of bandwidth and transmitted power. Thus we are interested in both a
modulation scheme's bandwidth efficiency, defined as the ratio of data rate to signal
bandwidth (bps/Hz), and its power efficiency, characterized by the error probability
which is a function of signal-to-noise ratio (SNR). Minimum Shift Keying (MSK) is
considered to be a spectrally efficient modulation scheme, in comparison with other
families of constant envelope modulation. However, its main sidelobe can be of some
worry in digital data transmission, particularly over nonlinear channels. Therefore, it is
practically of interest to search for further efficient pulse shaping schemes, largely
proposed either through baseband pulse shaping and/or filtering processing [1,2]. The
problem of minimizing out-of-band interference power received a lot of attention in
published articles. In the literature [3,4,5], authors have presented analytical and/or
numerical techniques for optimizing the baseband pulse shapes of MSK signals. Two
discrete pulses have been considered in [4]: the staircase and the piecewise linear, while
in [3,5] the optimum pulse is expressed in terms of spheroidal wave functions.
In this paper a new pulse shaping method is proposed based on Walsh functions, where
the implementation of Walsh functions is very easy compared to spheroidal wave
functions.

2. Representation of Minimum Shift Keying (MSK):

The Minimum shift keying (MSK) signal can be defined in the k-th interval
kT t k T≤ ≤ +( )1  as [6]:
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where xk is a phase constant which is valid over the k-th binary data interval. The value
of xk is a constant during T interval, that is, xk = 0 2 or   moduloπ π ,  determined by the
requirement that the phase of the waveform be continuous at t=kT.
Using trigonometric identities and the property that xk = 0 2, )π π(modulo , the MSK
waveform representation in (1) can be rewritten in a quadrature form as:
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where 1)cos( ±== kI xa , 1)cos( ±=−= kkQ xaa  and the in-phase and quadrature
symbol weightings are
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As shown by Gronemeyer [6], MSK can be viewed as an Offset-QPSK (OQPSK) with
sinusoidal symbol weighting. The in-phase and quadrature channels with the half
sinusoidal symbol weighting imposed by c(t) and s(t) respectively. In the case of
OQPSK a rectangular symbol weighting used.
From the above discussion and as shown by Gronemeyer [6], we can see that MSK and
OQPSK can be generated by demultiplexing the data stream ak  into odd and even data
streams which are used to determine the symbol pulse signs of the in-phase and
quadrature channels during odd intervals: ( ) ( )2 1 2 1k T t k T− ≤ ≤ + , and even intervals:
2 2 2kT t k T≤ ≤ +( ) , respectively.
MSK can then be viewed as either as an OQPSK signal with sinusoidal pulse weighting,
or as a CPFSK signal with modulation index h=0.5. The name minimum shift keying
comes from the fact that the frequency tone spacing which allows the two FSK signals
to be coherently orthogonal is minimum and equals, Tf 21=∆ . The tone spacing in
MSK is one-half that employed in conventional orthogonal FSK modulation.
The MSK signal x(t) has a complex (low-pass) envelope of the form:

)](sin[)](cos[)](exp[)(~ tjttjtx Φ+Φ=Φ=                                                                      (5)

where
[ ])2exp()(~Re)( tfjtxtx cπ=                                                                                                (6)

and Re[.] denotes the real part of the quantity in brackets. It follows that the baseband
power spectral density of x(t) is given by [1]:

T
fSfC

fG
2

)()(
)(

22 +
=                                                                                                      (7)

where C(f) and S(f) are the Fourier transform of c(t) and s(t) respectively. From (7), the
baseband spectrum of MSK signal is then given by:
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A better comparison of bandwidth requirements for these modulation schemes is given
in terms of fractional out-of-band power (F.O.B.P), which is given in terms of the
baseband power spectrum, G (f), by:

∫
∫

∞

∞

=

0
)(

)(
F.O.B.P

dffG

dffG
W                                                                                                  (9)

where W is the one-sided bandwidth.
This bandwidth criterion states that the occupied bandwidth is the band that leaves
exactly a certain specified percentage outside this bandwidth. For example we will
adopt that the bandwidth as the band by which 99% of the total power is inside the
bandwidth (i.e., 1% of the total power is outside the band). The fractional out-of-band
power for MSK is shown in figure (1).

Figure (1): Fractional Out-Of-Band Power for MSK

From figure (1) we can see that the RF bandwidth, B=2W, which contains 99% of the
total power is MSKfor2.1 bRB ≅  [1,7].
The bandwidth (spectral) efficiency is defined as BRb=η , where R Tb = 1  is the bit
rate. The bandwidth efficiency for MSK with respect to 99% power bandwidth can be
found as Hzbps/833.0≅η .
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3. Some Properties of Walsh Functions:

Before going into details of the pulse shaping techniques in MSK signals, we are going
to define the Walsh functions with some of its properties as have been given in [8].
The selection and use of any orthogonal set of functions still hinges primarily on the
type of problem under study and the consequent amenability of the problem to the
specified set. Walsh function analysis may prove more advantageous from such points
of view as manipulation and implementation. Upon defining Walsh functions as a
complete orthogonal set, it becomes possible to employ these functions in Walsh series
expansion representations for suitable functions. Thus, a square-integrable time-limited
function f(t) defined on a finite interval [0,T) has a Walsh series representation given by:

f t A n t Tn
n

( ) ( , )= ⋅
=

∞

∑ ψ
0

                                                                                             (10)

where )/,( Ttnψ  is the Walsh function and An is the Walsh coefficient given by
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T

n dtTtntf
T

A
0

),()(1
ψ                                                                                    (11)

The proposed pulse shaping in MSK-type signaling is expressed in terms of Walsh
functions, as given by (10), this approach is to express the symbol weightings c(t) and
s(t) in terms of a finite number N of Walsh functions instead of half sinusoidal pulses.
The first eight Walsh functions are shown in figure (2).
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Figure (2): The first eight Walsh functions [8]
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4. Discrete Symbol Weighting in MSK-Type Signals:

In MSK the symbol weightings c(t) and s(t) are half-sinusoidal of duration of 2T
interval, as have been shown by (3) and (4). In this paper we will use discrete symbol
weightings instead of sinusoidal weightings, while keeping with our original idea of
generating MSK-type signals. So, we start with representing the new in-phase symbol
weighting (pulse) c(t) in terms of Walsh functions on a finite interval [0,T) as

TtTtnAtc
n

n <≤⋅= ∑
∞

=

0,),()(
0

ψ                                                                                (12)

Instead of searching for a time continuous optimum pulse c(t), we will search for a
discrete version of it for a finite given number N of Walsh functions as given by:

∑
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nd TtTtnAtc ψ                                                                              (13)

This discrete pulse c td ( )  is defined on one bit interval due to the Walsh functions
definition. As in MSK signal the inphase symbol weighting c(t) has even symmetry
about its midpoint in the interval − ≤ ≤T t T ; we shall define the discrete symbol
weighting c tN ( )  in the interval − ≤ ≤T t T  using the even symmetry property, i.e.,
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In keeping with our original idea of generating MSK-type signals we shall specify, as is
true in MSK, two major requirements, the constant envelope property which is clearly
satisfied by symbol weightings c(t) and s(t) in (3) and (4), i.e.,

Tttstc ≤≤=+ 0,1)()( 22                                                                                          (15)

and the second requirement to ensure MSK-type signaling is that the in-phase and
quadrature symbol weightings c(t) and s(t) be identical [9], i.e.,

s t c t T( ) ( )= −                                                                                                        (16)

Applying these two requirements on our discrete in-phase and quadrature weightings,
we get
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Tttstc NN <≤=+ 0,1)()( 22                                                                                     (17)

and

s t c t TN N( ) ( )= −                                                                                                  (18)

Furthermore, it is straightforward to show that, the discrete in-phase symbol weighting
c tN ( )  in (14) can be rewritten as
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Similarly, by following (18) the discrete quadrature symbol weighting s tN ( )  can be
written as
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The new coefficients Bn  are linear combination of Walsh coefficients An and are given
by the set of linear equations as follows:

NWAB ⋅=                                                                                                                     (22)

where the vectors AB and  are given by:
[ ]...... 110 −= NBBBB                                                                                                    (23)

[ ]...... 110 −= NAAAA                                                                                                (24)
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and NW  is an ( )N N×  symmetrical matrix with its rows composed of sample values of
the first N  Walsh functions, e.g., for N=4 the matrix 4W  is given by:
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where ±  represent ±1. The discrete in-phase and quadrate symbol weightings c tN ( )  and
s tN ( )  are shown in figure (3). The matrices W2 , W4 , W8  and W16  (for N=2, N=4, N=8 and
N=16 respectively) are shown in [8].
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Figure (3): The discrete inphase and quadrature symbol weightings c tN ( ) and s tN ( )

To find the baseband power spectral density for the signal x(t), that expressed in (2)
with discrete symbol weightings c t s tN N( ) ( ) and , we use (7) that is:

G f
C f S f

T
N N( )

( ) ( )
=

+2 2

2
                                                                                       (26)

where )(and)( fSfC NN  are the Fourier transform of c t s tN N( ) ( ) and  respectively; but
due to the fact that c t s tN N( ) ( ) and  are identical, their Fourier transform magnitudes are
equal, i.e.,

C f S fN N( ) ( )=                                                                                                         (27)
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where the baseband power spectral density PSD G f( )  in (26) is simplified as follows:

G f
C f

T
N( )

( )
=

2

                                                                                                          (28)

Then, we are going to search for the optimum pulse shape by finding the coefficients BN

which minimize the out-of-band power for a given number of Walsh functions N (the
required accuracy) and bandwidth W. The fractional out-of-band power (F.O.B.P) is
computed numerically from (9). Thus, for each given bandwidth W, there exists only
one optimum discrete pulse shape. The parameter C has been defined as a function of
normalized bandwidth WT , and is given by [4,5]:

C WT= 2 π                                                                                                                (29)

The optimization is then carried for different values of bandwidth W (i.e., different
values of the parameter C); for example, C=1.0 corresponds to normalized bandwidth

159.0=WT ; C=3.0 corresponds to 477.0=WT ; and C=8.0 corresponds to 273.1=WT .
The optimization problem is therefore reduced to the determination of the vector B ,
given by (22), which minimizes (9), subject to the constant envelope property of (17),
and is then given by the N  following equations:

1,....,1,0,12
1

2 −==+
−−

NiBB iNi                                                                                    (30)

Where, without loss of generality, the constant envelope of the modulated carrier has
been set equal to unity. The constraint of constant envelope given by (30) reduces the
dimension of the optimization problem in half, as follows:

1
2

.....,,1,0,12
1

2 −==+
−−

NiBB iNi                                                                                      (31)

where N is even number. In this paper we restrict our work to two cases, the first case
with N=8 (i.e., the baseband pulses c t s tN N( ) ( ) and  are expressed in terms of the first
eight Walsh functions), while the other case is for N=16 (i.e., the baseband pulses
c t s tN N( ) ( ) and  are expressed in terms of the first sixteen Walsh functions).
In order to find the PSD, we follow (28), where we will find the Fourier transform of
c tN ( )  and then substitute in (28). For N=8 we have the in-phase symbol weighting c tN ( )
as follows:
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After some manipulations, the Fourier transform of c tN ( )  is then given by:
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where the baseband PSD of x(t), given by (28), is then:
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The approach to find the optimum pulse for a given bandwidth W is then considered.
For each given W we have one optimum pulse that minimizes the out-of-band power
interference given by (9). Our problem is to find the coefficients Bi  that minimize out-
of-band power with PSD given by (34). The optimization is carried out by numerical
methods; that is, to find the out-of-band power for each given set of Bi 's until we reach
the minimum out-of-band power at the required bandwidth W (i.e., given C WT= 2 π ).
After finding the coefficients Bi , we then find the corresponding Walsh coefficients Ai

using the set of linear equations given  by (22).
For N=8 the optimum coefficients Bi 's are given in Table (1) (i.e., for each given C or
WT there is a set of coefficients Bi 's corresponding to the optimum pulse at this
bandwidth value W). While the corresponding Walsh coefficients Ai  are computed
according to (22), and are summarized in Table (2). The fractional out-of-band power
curves for these obtained optimum pulses are shown in figure (4). From these curves we
can observe that for each given bandwidth W, the fractional out-of-band power curve for
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the optimum pulse is minimum at this value of bandwidth W. (Note that W denotes the
bandwidth while WT denotes the normalized bandwidth to the bit rate).
As an example, for C=3.0 (corresponding to the normalized bandwidth WT=0.477), the
fractional out-of-band power curve is minimum at this normalized bandwidth value (i.e.,
WT=0.477); and so on for other values of WT's (or corresponding C's).
Similarly for N=16, the inphase symbol weighting c tN ( )  can be given as
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where the Fourier transform of )(tcN  is then given by
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and the baseband PSD for the signal x(t) is then calculated using (28).
Table (3) and Table (4) summarize the optimum coefficients Bi  and the corresponding
Walsh coefficients Ai  respectively. The fractional out-of-band power curves for these
obtained optimum pulses are shown in figure (5).
Figure (6) shows the fractional out-of-band power curves for the optimum pulse
(C=8.0) with MSK. From this figure we can see that we can get an improvement by
using Walsh functions in pulse shaping with MSK-type signaling where the signal,
modulated by the optimum pulse at C=8.0, appears spectrally superior to MSK.
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Table (1): The optimum coefficients iB  corresponding to the obtained optimum pulses
(N=8) for various values of normalized bandwidth WT

Bandwidth factor
C WT= 2π

C=1.0
(WT=0.159)

C=3.0
(WT=0.477)

C=4.0
(WT=0.637)

C=8.0
(WT=1.273)

B0 0.80 0.90 0.98 0.996
B1 0.75 0.88 0.96 0.973
B2 0.76 0.86 0.89 0.907
B3 0.73 0.75 0.78 0.785
B4 0.63 0.64 0.62 0.619
B5 0.65 0.51 0.43 0.421
B6 0.60 0.46 0.28 0.231
B7 0.53 0.42 0.15 0.089

Table (2): The optimum Walsh coefficients iA  corresponding to the obtained optimum
pulses (N=8) for various values of normalized bandwidth WT

Bandwidth factor
C WT= 2π

C=1.0
(WT=0.159)

C=3.0
(WT=0.477)

C=4.0
(WT=0.637)

C=8.0
(WT=1.273)

A0
-110028.7 × -110825.6 × -110405.6 × -110276.6 ×

A1
-210963.6 × -110713.1 × -11067.2 × -110876.2 ×

A2
-210038.3 × -21035.5 × -110115.1 × -110246.1 ×

A3
-310875.2 ×− -210225.1 ×− -2105.4 ×− -210538.5 ×−

A4
-210088.1 × -210625.3 × -210675.5 × -210063.6 ×

A5
-41075.8 ×− -3105.7 ×− -210075.2 ×− -210438.2 ×−

A6
-41025.1 ×− -31025.2 × -31075.3 ×− -310375.5 ×−

A7
-310875.4 ×− -2101.2 ×− -210825.1 ×− -210938.1 ×−

Table (3): The optimum coefficients iB  corresponding to the obtained optimum pulses
(N=16) for various values of normalized bandwidth WT

Bandwidth factor
C WT= 2π

C=1.0
(WT=0.159)

C=3.0
(WT=0.477)

C=4.0
(WT=0.637)

C=8.0
(WT=1.273)

B0 0.76 0.951 0.99 0.998
B1 0.75 0.94 0.976 0.995
B2 0.74 0.918 0.968 0.982
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B3 0.73 0.898 0.944 0.965
B4 0.729 0.876 0.915 0.935
B5 0.723 0.827 0.86 0.876
B6 0.719 0.78 0.818 0.836
B7 0.71 0.72 0.729 0.77
B8 0.704 0.694 0.685 0.638
B9 0.695 0.626 0.575 0.549
B10 0.691 0.562 0.51 0.482
B11 0.685 0.482 0.403 0.355
B12 0.683 0.44 0.33 0.262
B13 0.673 0.397 0.251 0.189
B14 0.661 0.341 0.218 0.099
B15 0.65 0.309 0.141 0.063

Table (4): The optimum Walsh coefficients iA  corresponding to the obtained optimum
pulses (N=16) for various values of normalized bandwidth WT

Bandwidth factor
WTC π2=

C=1.0
(WT=0.159)

C=3.0
(WT=0.477)

C=4.0
(WT=0.637)

C=8.0
(WT=1.273)

A0
-110064.7 × -110726.6 × -110446.6 × -110246.6 ×

A1
-210619.2 × -110912.1 × -110554.2 × -11095.2 ×

A2
-210294.1 × -210631.8 × -110118.1 × -110209.1 ×

A3
-410625.5 ×− -210331.2 ×− -210231.4 ×− -21055.5 ×−

A4
-310188.8 × -210631.4 × -210319.5 × -210563.5 ×

A5
-410125.3 ×− -210156.1 ×− -210794.1 ×− -210425.2 ×−

A6
-410125.3 ×− -310438.2 ×− -310063.3 ×− -310125.6 ×−

A7
-310438.2 × -210356.1 ×− -210869.1 ×− -210375.1 ×−

A8
-310438.4 × -210269.2 × -210469.3 × -210938.2 ×

A9
-510251.6 ×− -310188.5 ×− -210194.1 ×− -210125.1 ×−

A10
-510251.6 ×− -410125.3 ×− -310813.2 ×− -41025.1 ×

A11
-410875.6 × -310438.9 ×− -210044.1 ×− -210325.1 ×−

A12
-51025.6 ×− -310312.1 ×− -310437.2 ×− -310375.1 ×−

A13
-410125.3 ×− -310188.1 ×− -310063.3 ×− -31025.1 ×−

A14
-410375.4 × -310313.1 × -310563.1 × -310125.5 ×−

A15
-51025.6 ×− -310563.1 × -310438.1 × -31025.4 ×
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Figure (4): Fractional out-of-band power for optimum pulse shaping with MSK-type
signaling (N=8)
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Figure (5): Fractional out-of-band power for optimum pulse shaping with MSK-type
signaling (N=16)



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE060 - 15

C=8.0
MSK

Normalized one-sided bandwidth, WT
0              0.5               1               1.5              2

FOBP [dB]

0

-10

-20

-30

-40

-50

Figure (6): Fractional out-of-band power for optimum pulse shaping C=8.0 (N=16) ,
and for MSK

5. Simulation Results:

The simulation is carried for the signal modulated by the obtained optimum pulses with
N=16. The channel models used in this paper are the discrete linear RC-low pass-type
channel and the discrete nonlinear Volterra channel with 10% nonlinear distortion
percentage.
The simulation results over a discrete linear channel are shown in Fig. 7, while the
simulation results over a nonlinear Volterra channel (10%) are shown in Fig. 8. From
these two figures we can see that the SNR degradation increases as C → 0 which results
from intersymbol interference.
Table (5) summarizes the SNR needed at bit-error rate of 10 4−  for the obtained optimum
pulses over linear and nonlinear channels. These results are obtained from figure (7) and
figure (8) and compared to the SNR needed for MSK.
From these tables we can see that the optimum pulse under the criterion of out-of-band
power may not be the optimum under the criterion of error rate performance.
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Figure (7): BER for optimum pulses (N=16) for various values of normalized
bandwidth WT over a linear channel

Figure (8): BER for optimum pulses (N=16) for various values of normalized
bandwidth WT over a nonlinear Volterra channel (10%)

Table (5): SNR (dB) needed for the obtained optimum pulses at 410−=eP  with  (N=16)

Modulation Technique MSK Pulse-Shaped MSK
C=8 C=4 C=3 C=1

Linear channel 15.4 15.6 15.9 16.4 17.7
Nonlinear channel (10%) 16.25 16.3 16.5 17.1 18.4

C=8.0
C=4.0

C=3.0

C=1.0

C=8.0
C=4.0
C=3.0
C=1.0
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6. Conclusions:

In this paper, a new pulse shaping technique is presented based upon Walsh functions.
From the above results, we can conclude that the application of Walsh functions with
optimum pulse shaping design (i.e., to express the optimum pulse shape in terms of
Walsh functions) in MSK-type signaling in order to minimize the fractional out-of-band
power leads to the flexibility of using such optimum pulses corresponding to the
required bandwidth (channel bandwidth) with minimum fractional out-of-band power.
However the criterion should be borne in mind, for the choice which yields highest band
occupancy will not usually be best under other desirable criterion, such as error
performance; i.e., the obtained optimum pulses may not be optimum under the criterion
of error rate performance. The channel used in MSK-type signaling systems must be as
linear as possible in order to get acceptable error rate performance.

References:

[1] R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication,
Macmillan Publishing Company, New York, 1992.

[2] D. V. Ramana, A. P. Shivaprasad, and S. Pal, Theoretical and Experimental
Results on QPSK Spectrum used for Data Transmission, IEEE TENCON-2003:
Proceedings of the Conference on Convergent Technologies for the Asia Pacific,
India, October 2003.

[3] G. S. Deshpande and P. H. Wittke, Optimum Pulse Shaping in Digital Angle
Modulation, IEEE Trans. on Commun., Vol. COM-29, No. 2, P.162-168,
February 1981.

[4] N. Boutin, S. Morissette, and L. Dussault, Optimum Discrete Pulse Shaping in
MSK-Type Signals, IEEE Trans. Commun., Vol. COM-31, No.11, P.1251-1253,
November 1983.

[5] G. Rabow, Amplitude- and Time-Limited Functions With Minimum Out-of-Band
Energy, IEEE Trans. Commun., Vol. COM-20, P.1150-1153, December 1972.

[6] S. A. Gronemeyer and A. L. McBride, MSK and Offset QPSK Modulation, IEEE
Trans. Commun., Vol. COM-24, No.8, P.809-820, August 1976.

[7] S. Pasupathy, Minimum Shift Keying, A spectrally efficient modulation, IEEE
Communications Magazine, Vol.17, P.14-22, July 1979.

[8] M. Maqusi, Applied Walsh Analysis, Wiley-Heyden, London, 1981.
[9] F. de Jager and C. B. Dekker, Tamed frequency modulation-A novel method to

achieve spectrum economy in digital transmission, IEEE Trans. Commun.,
Vol.COM-26, No.5, P.534-542, May 1978.




