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Abstract:

Three simulated annealing cooling schedules (exponential, fast and Boltzmann) are
designed, implemented and compared for performance on a depth profile inversion
problem. The analysis of the performance results proves that the simulated annealing
technique is able to solve nontrivial inverse problems.
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1. Introduction:

The objective of global minimization [1–4] is to find the globally best solution of
nonlinear models, in the presence of multiple local optima.

One constructs an objective function which depends on a number of independent
variables and proceeds to find the values of those independent variables that lead to the
globally smallest error in the objective function. All the global minimization techniques
(simulated annealing, genetic algorithm, particle swarm, ant colony, ...) have the ability
to escape from a local minimum (in contrast to local minimization methods that are
trapped in the first minimum they found).

Simulated annealing is a probabilistic technique for approximating the global optimum
of a given function. Specifically, it gives an approximate global optimization in a large
search space. For problems where finding the precise global optimum is less important
than finding an acceptable global optimum in a fixed amount of time, simulated
annealing is preferable to alternative methods.

The technique of simulated annealing [5–6] is based on the physical analogy of cooling
crystals that, when cooled very slowly, attempt to arrive at its globally minimal potential
energy. The name and inspiration come from annealing in metallurgy, a technique
involving heating and controlled cooling of a material to increase the size of its crystals
and reduce defects. Both are attributes of the material that depend on its thermodynamic
free energy. Heating and cooling the material affects both the temperature and the
thermodynamic free energy. While the same amount of cooling brings the same
decrease in temperature, the rate of cooling dictates the magnitude of decrease in the
thermodynamic free energy, with slower cooling producing a bigger decrease.
Simulated annealing interprets slow cooling as a slow decrease in the probability of
accepting worse solutions as it explores the solution space. Accepting worse solutions is
a fundamental property of the technique because it allows for a more extensive search
for the optimal solution through the ability to escape local minima. This is accomplished
by simulated annealing acceptance function, namely, if the new objective function value
is less than the old, the new guess is always accepted. Otherwise, the new guess is
accepted at random with a probability depending on the difference in objective function
values and on the current temperature.

The method was independently described by Scott Kirkpatrick, C. Daniel Gelatt and
Mario P. Vecchi in 1983, [7] and by Vlado Černý in 1985, [8]. The method is an
adaptation of the Metropolis–Hastings algorithm, a Monte Carlo method to generate
sample states of a thermodynamic system, invented by M. N. Rosenbluth and published
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by N. Metropolis et al. in 1953.[9]

2. Formulation:

An application of simulated annealing, namely, depth profile inversion is presented. An
electric current source of known strength and location in free space emits an
electromagnetic field that interacts with an inhomogeneity embedded in free space. The
inhomogeneity is in the form of a slab of known thickness and consists of N layers, each
of known thickness, with unknown material properties (permittivities and
conductivities).

The electromagnetic fields scattered from the inhomogeneity are collected at M wave
numbers. One would like to find the 2N material properties, given the measured
scattered electromagnetic fields at the M wave numbers.

To find the unknowns, one converts the inverse scattering problem into a global
minimization one.

An objective function, £ , is constructed in the form
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where m
mE  is the measured electric field collected at the m th wave number and m

cE  is the
electric field computed from a guess of what the 2N material properties might be.
Hence, the objective function is 2N-dimensional, that is,

{ } { }( ),£ , ,  1: ,r n nf n N= =ò (2)

where ,r nò  and n  are the relative permittivity and conductivity, respectively, of the n th

layer.

Such a 2N-dimensional function will have many minima. One then looks for the 2N
variables that lead to the global minimum of the objective function, which when found
will identify the sought after material properties of the layered slab.

3. Design of the algorithm:

A) Initial Guesses Preparation

The proposed simulated annealing method is applied on slabs of four layers ( 4N = ). A
very large data set of 52N initial guesses (of where the global minimum might be located
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in the 2N-dimensional space) have been generated, with the relative permittivity ( ,r nò )

and the conductivity ( n ) with 1:n N= , in the form
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with Rand(1,1)  is a box-car random number generator for values between zero and one.
Hence,
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The ranges in eq. (4) are supposed to be known a priori. We have used in the work
presented here
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Next, we select, randomly, from the generated data set, a small percent (typically 0.5%–
2%) for using as initial guesses for the simulated annealing algorithm. Figure (1) shows
the distribution of one variable, ,4rò , for the initial guess. Since, for the presented case,

,45.5 4.5r≥ ≥ò , it is to be noted from the figure that the small percent, 1%, retained the

box-car distribution of the original very large data set.
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Figure (1): Histogram distribution of the initial guess values of the
relative permittivity of the fourth layer ( ,4rò ).

Hence, the algorithm is not biased to certain initial guess values over other values.
Similar figures for the remaining seven variables can be found in [10]. Since,
nonetheless, we have a large number of initial guesses –3906– (to test the method) an
efficient Maxwell's equation solver is needed to generate the value of the objective
function. We have developed and used our own solver, see [10–11] for details.

Three simulated annealing cooling schedules (exponential, fast and Boltzmann) are
designed, implemented and compared for performance.

Performance criteria include mean square error (MSE), percent error in each medium
parameter for the minimum objective function, error histogram distribution as well as
the effect on the results of the test case, of adding different percentages of noise to
{ }m

mE . The test case used for the performance analysis presented here is ,1 ,22, 3,r r= =ò ò

,3 4,r =ò ,4 5,r =ò 1 0.11, = 2 0.22, = 3 0.33 =  and 4 0.44. = More cases can be found
in [10].

B) Exponential Cooling Schedule (ECS)

In this case, the cooling schedule is given by

0 ,s
sT a T= (5)

where 1,2,3,s = … is the iteration number (we use 5001 iterations), 0T is the initial

temperature (we used 100 C° ) and a  is the cooling rate (we used 0.95).
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Table (1) shows the performance of this cooling schedule for noiseless data and 1%±
noisy data. Figs. (2)–(3) show the histogram of the distribution of the relative
percentage error for ,4rò (without/with noise). The number of initial guesses used in the
work presented here is 3906.

Table (1): Performance of ECS

Noise 0 1%±
Minimum objective
function

113.9 10−× 27.39 10×

Percent error in
slab parameters

[-0.47, 0.64, 0.73, 2.4,
0.012, 1.1, -0.72, -4.9]

[-9.9, -9.9, 1.9, 9.9,
9.1, -1.8, 9.0, 9.1]

MSE 0.002 0.048

Figure (2): Histogram distribution for the percentage error of the relative permittivity
of the fourth layer, .4rò , for the ECS with zero noise.
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Figure (3): Histogram distribution for the percentage error of the relative permittivity
of the fourth layer, .4rò , for the ECS with 1%±  noise.

C) Fast Cooling Schedule (FCS)

In this case, the cooling schedule is given by

0 ,
1s

T
T

s
=

+
(6)

where 1,2,3,...s =  is the iteration number (we use 5001 iterations), 0T is the initial

temperature (we used 100 C° ).

Table (2) shows the performance of this cooling schedule for noiseless data and  noisy
data. For a fair comparison, the same initial guesses used in B) are used in C). Figs. (4)–
(5) show the histogram of the distribution of the relative percentage error for ,4rò
(without/with noise).

Table (2): Performance of FCS

Noise 0 1%±
Minimum objective
function

136.8 10−× 31.091 10×

Percent error in
slab parameters

[-8.8, -1.2, 2.6, -6.4,
-0.002, 0.04,-0.19, 0.39]

[-9.45, -10, -3.3, -6,
9.1, 9.1, 9.1, 9.1]

MSE 0.018 0.029
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Figure (4): Histogram distribution for the percentage error of the relative permittivity
of the fourth layer, .4rò , for the FCS with zero noise.

Figure (5): Histogram distribution for the percentage error of the relative permittivity
of the fourth layer, .4rò , for the FCS with 1%±  noise.

D) Boltzmann Cooling Schedule (BCS)

In this case, the cooling schedule is given by

( )
0 ,

ln 1s

T
T

s
=

+
(7)

where 1,2,3,...s =  is the iteration number (we use 5001 iterations), 0T is the initial

temperature (we used 100 C° ).

Table (3) shows the performance of this cooling schedule for noiseless data and 1%±
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noisy data. For a fair comparison, the same initial guesses used in B) and C) are used in
D). Figs. (6)–(7) show the histogram of the distribution of the relative percentage error
for ,4rò (without/with noise).

Table (3): Performance of BCS

Noise 0 1%±
Minimum objective
function

122.4 10−× 31.226 10×

Percent error in
slab parameters

[-7.5, 1.7, -5.6, 5.0,
-0.009, -1.5, 6.6, -1.6]

[9.95, 9.97, -9.99, 10,
-9.1, -9.1, -9.1, -9.1]

MSE 0.017 0.068

Figure (6): Histogram distribution for the percentage error of the relative permittivity
of the fourth layer, .4rò , for the BCS with zero noise.
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Figure (7): Histogram distribution for the percentage error of the relative permittivity
of the fourth layer, .4rò , for the BCS with 1%±  noise.

4. Analysis of the results:

Figure (8) shows the three cooling schedules as functions of s=1:500. The FCS is the
fastest while the BCS is the slowest.

Figure (8): Cooling schedules. Squares represent the ECS, '+' signs represent the FCS
and the solid line represents the BCS.

The performance results presented here as well as those detailed in [10] show that the
ECS has a much better MSE than the FCS and the BCS with the later two of comparable
MSE.

The 3906 initial guesses of figure (1). with a priori bound of 10%± led after the
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optimization, for the three cooling schedules as per figures (2), (4) and (6) to the same
bound of 10%.±  Hence, the simulated annealing technique does not improve the a priori
knowledge for all the initial guesses taken together.

However, the error in the eight slab parameters for the minimum objective function, as
per tables (1)–(3), is much better than the a priori knowledge. The ECS produces the
smallest errors with a posteriori major improvement on the a priori knowledge.

Tables (1)-(3) as well as figs. (3), (5) and (7) show that the simulated annealing method
is very sensitive to noise; one should not expect an improvement on the a priori known
range of each medium parameter. This is in contrast to the artificial neural networks
method that continues to produce good results in the presence of noise; see [10].

Figures (2), (4) and (6) also show that the simulated annealing technique does not
produce outliers. This is in contrast to the artificial neural networks method that may
produce few outliers in the training and/or generalization sets; see [10].

5. Conclusions:

A procedure has been presented and tested for the design of simulated annealing global
minimizer for the task of solving inverse scattering problems. While we have
concentrated on the role of the cooling schedule, several other parameters should be
looked at (for example, the number of iterations). A detailed study of the effect of those
parameters can be found in [10]. The analysis of the performance results, for noiseless
data, proves that the simulated annealing technique is able to solve nontrivial inverse
problems.
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