Comparative Analysis of Energy Efficiency Indicators for Residential Sectors in Egypt

Hafez El-Salmawy, Kamelia Youssef, Shereen Abdulla, Eman Ahmed Egyptian Electric Utility and Consumer Protection Regulatory Agency info@egyptera.com

Abstract-- A number of indicators to measure Energy efficiency (EE) performance was developed by different organizations. The World Energy Council (WEC) has developed a number of indicators for measuring EE performance. The WEC residential EE indicators are; (i) KWh/household, (ii) KWh/Capita, (iii) Solar water heaters/Capita and (iv) emissions in CO2 (Ton)/household.

The EE indicators are developed to promote and support development, introduction and implementation of EE policies. Furthermore, the EE indicators are measured (i) to monitor changes in EE and (ii) to allow comparisons of different EE situations.

Improving EE, for electric power use in specific, will result in: 1- Better utilization of the available generation capacity to supply more customers, 2- Slow down of the power demand growth, and 3- Reduction of the investment needed for expansion of the electricity sector.

In Egypt, there are nine Electricity Distribution Companies (EDCs). Each consists of a number of geographical sectors. Each sector is further divided into districts. The district network consists of distributors, distribution transformers, and LV & M V Lines.

Egypt era (Egyptian electric utility and consumer protection regulator agency) has collected and classified database of residential sectors for the nine companies.

There are different log sheets with information about districts and sectors. The main log sheet data for each sector acquired are:

- Monthly KWh & No. of households for each district

- Monthly tariff category KWh & No. of households for each sector

The EE indicators are calculated accordingly using a residential sector hierarchy based on household data, which relates between reliability of Composite Energy Indices (CEI), and the level of sector disaggregation. The residential sector covers all types of residential units. These sectors are further classified based upon nature of rural and urban area. This paper presents a set of EE indicators developed during five years period. The data set is used to analyze the EE indicators of Electricity consumption in different levels in residential sector. The paper compares the EE indicators among the different geographical regions. It discusses the criteria for the peer group selection. The paper presents the comparison on district level, and company level. Furthermore, the paper looks at the possibility of comparing the over all country EE performance to other countries.

Index Terms--Energy, Efficiency, Energy Efficiency, duration, Consumption, performance, reliability.

I. BACKGROUND

Energy efficiency

The house hold sector includes those activities related to private dwellings (dw) it covers all energy – using activities

in apartments and houses, including space and water heating, cooling, lighting and the use of appliances.

Something is more energy efficient if it delivers more services for the same energy input or the same services for less energy input. For example a CFL bulb uses less energy than incandescent bulb to produce the same amount of light therefore the CFL is considered to be more energy efficient.

Energy efficiency [1] refers to the use of primary or secondary energy to produce a good of a service .Energy conservation results either from using more efficient equipment such as CFL or less energy consuming machinery or of changing behaviors such switching lights off when leaving premises.

The EE indicators are calculated accordingly using a residential sector hierarchy based on household data, which relates between reliability of composite energy indices (CEI), and the level of sector disaggregation. Fig (1) and Table (1) describe this concept.

Fig (1) Data disaggregation and Reliability of CEI

$T_{a}h_{a}(1)$	definition	of	facility	larval.	. :	fia	(1)	•
Table(T)	definition	or	Tacinty	leven	sш	ng	(1))

Level 1	Reliability of	Level of Sector
	CEI indicators	disaggregation
1	Lowest	Economy
2	Lower	Sector
3	Middle	Subsector
4	Higher	Activity
5	Highest	Device / Process

In Egypt, there are nine EDCs. Each consists of a number of geographical sectors. Each sector is further divided into districts. The district network consists of distributers, distribution transformers, and LV & MV lines. Fig (2)

represents residential sector pyramid based on hh(house hold) for the nine EDCs, while Fig (3) represents Residential Sector Pyramid based on hh for One EDC.

Fig (3) Residential Sector Pyramid based on household for One EDC

EE Indicators for residential sector

The main EE indicators are:

- Residential energy consumption / house hold (hh)
- Residential energy consumption / floor area. Table (2) shows sets of data collected, purpose and limitation of EE indicators

Table (2) EE indicators of residential sector

Item /indicator	Residential energy	Residential energy		
/mulcator	consumption / m	area		
Data required	- Energy consumption - No. of hh	- energy consumption - total floor area		
Purpose	 Provide a general overview of the trends in aggregate energy intensity When energy use by end – use is not known energy use/ hh can be used as an energy intensity indicator 	- Monitor energy use in the residential sector - Combined with energy use per hh , provides useful insights on what might have been the main driver of energy consumption		
Limitation	-Does not measure EE development -Influence by many factors not related to EE			

EE and CO_2 indicators

According to World Energy Council [3], the EE indicators for households are:

- Average electricity consumption of households per capita (AECH/ capita) (in KWh/cap)
- Average electricity consumption of electrified households (AECEH)(in KWh/hh)
- Electricity consumption for electrified households with CC (ECEH with CC)(in KWh/hh)
- Electricity consumption for electrical appliances and heating (ECEAH)(in KWh/hh)
- Electricity consumption for thermal use (ECTU)(in kWh/hh)
- CO2 emission of residential sector per house hold (CO2 ERS)(in t CO₂/dw)

Table (3) shows the EE and CO2 indicators in some regional and countries according to [3]

Table (3) EE and	CO2 indicators	in some 1	regions (countries)
(2011) [3]				

· /						
Indicators/	AECH	AECEH	ECEH	ECEAH	ECTU	CO ₂ ERS
region country	(KWh/cap)	(kwh/hh)	with CC	(kwh/hh)	(kwh/hh)	(ton
			(kwh/hh)			CO ₂ /dw)
World	726	3338				0.992
European	1611	3888				1.84
union						
Europe	1544	4209				1.96
Italy	1153	2735	2740			1.8 7
Portugal	1328	3510	3560			0.51
Luxemburg	1776	4439	5137			4.02
US	4569	11789	11569			2.64
Middle east	1458	9093				4.31
Saudi Arabia	3884	20926	21138	8370	12556	0.757
China	426	1308	1303	1179	130	0.753
India	139	778	760	690	66.9	0.3
Africa	170	2011				0.253
South Africa	842	4380				0.686
Egypt	651	2578	2582	2546	32.2	0.57
United Arab	3803	18253	17954	7301	10952	
emirates						
Qatar	3053					
Kuwait	8513	45190	45653	18076	27114	

From table (3)

- CO2 emissions per capita vary greatly among countries, the lowest was 0.3 t CO2 /capita in India and the greatest was 4.02 t CO2/ capita in Luxemburg
- In Kuwait all EE indicators were greatest
- Kwh/ capita and kwh/hh vary greatly among countries.

Table (4) represents the development of patterns of energy consumption in Egyptian households (1990-2011)

Table (4) Development of patterns of energy consumption in Egyptian households [3]

Indicator	Unit	1990	2000	2005	2009	2010	2011
AECH	kwh/cap	235	348	4 57	595	633	651
AECEH	Kwh/hh	1214	1590	1943	2413	2536	2578
ECEH With	Kwh/hh	-	-	1945	2411	2530	2582
CC*							
ECEAH	Kwh/hh	1207	1571	1921	2383	2504	2546
ECTU	Kwh/hh	7.36	18.5	21.7	30	31.1	32.2
CO2 ERS	Ton	0.799	0.688	0.664	0.748	0.732	0.570
	CO ₂ /dw						

*CC: capital cost

From table (4)

The annual % rate through 2000/2011 for kWh/cap is 5.9%/year and 4.5%/year for electrified households (kwh/hh) [3].

According to annual data in [4], the development of residential sector indicators for Egypt are summarized in table (5)

Table (5) Development of residential sector indicator for Egypt [4]

Item	2011/ 2012	2010 / 2011	2009/ 2010	2008/ 2009	2007/ 2008	2006/ 2007
Energy sold (Gwh)	56664	5137 0	47431	43811	40271	36596
No. of custo- mers	19823502	1946 4312	18800239	18128353	16968095	15848540
Kwh/hh	2858.43	2639. 18	2522.89	2416.71	2373.34	2309.11

Table (6) development of level /hh/w for EDC

Table (6) development of kwit/iii/y for EDCs					
	Kwh/hh/y				
	2010/2011	2011/2012			
EDC1	3029	3029			
EDC2	2880	3532			
EDC3	3114	2982			
EDC4	2919	3035			
EDC5	2269	2442			
EDC6	3121	3306			
EDC7	2364	2762			
EDC8	2039	2175			
EDC9	197	212			

Table (6) represents the kwh/hh/y for each EDCs during 2010:2012

From table (5) & (6):

A kwh/hh/y not vary among EDCs except EDC9, also closed to results in table (5)

Geographical survey

Some of the necessary data to establish EE indicators for all geographical area of Egypt are carried out. The First Survey collected information about KWh and number of hh in EDC6. EDC6 has 7 geographical sectors, the outcome EE

indicators (KWh/hh/y) are summarized in table (7) for 2008-2011. The Second Survey collected information about area (in m²) for hh and annual energy consumption (2011). Types of dominated loads are: air conditions, lighting, refrigerators, freezers, clothes washers, TVs, and computers. Data used to calculate kWh/hh/y and kWh/m²/y. Table (8) summarizes the outcome of EE indicators for 9 EDCs in Egypt.

Table (7) EE indicators (kwh/hh/y) for EDC6 and its sectors

sector	2008	2009	2010	2011
Sector(1)	1836.1	2437.2	2500.2	2563.5
Sector(2)	2093.5	2709.6	2852.9	2840.7
Sector(3)	1622.6	2349.6	2389	2393.6
Sector(4)	1739.7	2250	2397	2350.4
Sector(5)	1844.1	2558.4	2641.8	2669.8
Sector(6)	2029	2408.4	2866.7	2911.2
Sector(7)	1797.4	2314.8	2568	2610.5
EDC6	1858.91	2475.43	2602.23	2619.96

Table (8) EE indicators for 352 hh

EDC	No. of	Kwh/house	Kwh/m²/y
	samples	hold /year	
EDC 1	51	3746	40.22
EDC 2	43	3701	38.4
EDC 3	18	3616.1	32.7
EDC 4	57	3143.4	36.14
EDC 5	77	6122.5	55.34
EDC 6	37	3780.5	43.36
EDC 7	56	3340.25	36.1
EDC 8	20	3563.6	40.82
EDC 9	5	5040	30.4
Average		4006	39.3

Table (9) Results of questioners for 328 in Egypt according to no. of samples in tariff structure (2011/2012)

	2 nd	3 rd	4 th	5 th	6 th
No.of customers	44	110	81	37	23
Average of W/m ²	4.415	5.36	4.1	4.96	8.672
Average of kwh/hh/y	2343. 18	3350.9	4830.2	6681.43	11337.24
Average of kwh/m ^{/2}	26.35	34.93	45.0	57.41	97.84

Source of questionnaire Egypt ERA

Table (9) shows the results for 328 hh in Egypt according to tariff structure.

The structure of electricity tariff applied in Egypt for the residential sector is divided to 6 tariff levels, starting from "first 5 kwh monthly" to "more than 1000 kWh monthly. The notes from tables (7), (8), (9) are:

. EE indicators vary greatly among EDCs

• Average kwh/hh/y (in table (7)) greater than all values in other tables

.kwh/hh/y for EDC6 according to table (7) smaller than its values in tables (8, 9)

. Average kwh/m^2 increase rapidly according to increase tariff structure

Conclusion

The expansion of the survey is a positive step in developing a residential energy data base and assessing trends in EE. The EE indicators calculated according to level 1, as hierarchy based on hh data, are less accurate than according to level 5. These results are highlight for calculated kWh /hh/y according to different calculation levels: Egyptian hh, EDCs hh, samples of sectors of EDC6, and according to tariff structure.

II. REFERENCES:

- [1] Tapping a hidden resource, Energy Efficiency in Middle East and North Africa February 2009
- Energy sector management assistance program (ESMAP)
- [2] Special feature European energy efficiency tends house hold energy consumption www.odyssee-indicators .org
- [3] World Energy Council, energy efficiency indicators www.wec.indicators.enerdata.eu/world.php
- [4] Annual reports of EEHC (2006:2011)

III. BIOGRAPHIES

Shereen Abdulla was born in Cairo, Egypt, on April 15, 1981. She finished her secondary school in 1998, and then studied Electrical Engineering in Cairo University to graduate in 2004. Her employment experience includes Energy Research Centre and Egypt Era (Egyptian Electric Utility and Consumer Protection Regulatory Agency).
Eman Ahmed was born in Cairo, Egypt, on September 5, 1988. She finished her secondary school in 2005, and then studied Electrical Engineering in Ain Shams University to graduate in 2010. Her employment experience in Egypt Era (Egyptian Electric Utility and Consumer Protection Regulatory Agency)