
Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

8th International Conference
on Electrical Engineering

ICEENG 2012

Design for Testability Technique for Microcontroller

By

Sherif I. Morsy* Mohamed H. El-Mahlawy* Gouda I. Mohamed*

Abstract:

Testing of embedded system including microcontroller is difficult task with external
Automatic Test Equipment (ATE). Therefore, empowering the microcontroller to test
itself as software-based self-testing (SBST) looks the suitable solution like the
microprocessor testing. Practically, the SBST is not suitable for microcontroller
testing. It utilizes large space area in the program memory inside the microcontroller
that has limited space area in the available memory. Also, it cannot test all
microcontroller internal modules and when it test internal modules it cannot make
sure that the General Purpose Input Output (GPIO) of the microcontroller work
probably without using external ATE. So the Design for Testability (DFT)
methodology that uses Instruction Set Architecture (ISA) of the microcontroller
family to generate test subroutines and for the Test Pattern Generator (TPG) and part
of the Built-In Self-Test (BIST) control unit and uses the external ATE for the other
part of the BIST control unit and for the test response compaction (TRC) and
evaluation.
This paper introduces a hybrid testing methodology that combines both SBST and
hardware-based self-test (HBST) for microcontroller testing as an efficient DFT
methodology. It introduces for either in the field or as part of a production test of a
microcontroller as an example of the system of chip (SoC). This DFT methodology is
based on divide and conquer algorithm and requires knowledge of the ISA of the
microcontroller to test not only the embedded processor found in microcontroller but
also test other peripherals found in it using brute force technique. The comparison
between the SBST and the presented hybrid methodology is based on memory
utilization, number of clock cycles that was taken to complete each test and the
number of modules that can be tested using each of them. Experimental results
indicate that the presented methodology is superior in memory utilization, test time
and can test all microcontroller modules for both 18F4X2 and 16F87X families.

Keywords: Design-for-Tetability (DFT), Built-In Self-Test (BIST)

* Egyptian Armed Forces



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 2

1. Introduction:

Almost every complex SoC contains at least one embedded processor. Such
processor is surrounded by memory of various sizes used for code and data storage
and other peripherals. The complexity of SoC designs consisting of deeply embedded
cores with poor accessibility makes their testing process a difficult task. Additionally,
the increasing gap between the operating frequencies of external ATE and the
operating frequencies of SoC lead to the escape of failures that may be detected only
when testing is performed in the actual speed of the IC. The transfer of the SoC test
task from an external ATE to an internal built-in self-test (BIST) mechanism provides
significant advantages not only for processor but also for other peripherals found on
the SoC [1]. Self-test methodologies can be executed either using HBST techniques
or SBST techniques. In HBST methodology, special parts of the circuit are used for
Test Pattern Generation (TPG), Test Response Compactor (TRC), and BIST
controller. In this case, the extra circuit area may be significant, but the most
important is the possibility of significant performance loss due to the introduction of
extra logic in the critical paths of the circuit. Recent applications of hardware-based
commercial logic BIST techniques in large industrial designs and microprocessors [2
- 4] revealed that extensive design changes have to be performed which has a
negative impact in the circuit area, performance and power consumption of the SoC.
SBST methodologies for embedded processor cores have the advantage that they
utilize the processor functionality and instruction set for both TPG and TRC and thus
do not add hardware or performance overheads in the optimized design [5]. SBST
achieves high fault coverage without system modifications. The processor executes
the SBST program residing in the memory of the SoC (e.g., in a flash memory) at its
actual speed (at-speed testing) and very small area, performance or power
consumption overheads are induced for the embedded system. So it's is better than
HBST for embedded systems testing. The SBST approaches can be classified in two
different categories. The first category includes approaches that have a high level of
abstraction and are functional in nature [6 - 8]. The second category includes the
SBST approaches, which are structural in nature and require structural fault driven
test development [4, 9 - 12].
The increasing heterogeneity and programmability associated with the
microcontroller architecture together with the rapidly increasing operating
frequencies and technology changes are demanding fundamental changes in VLSI
testing.  The test application using external ATE only poses challenges. Unlike
hardware-based self-testing, software-based testing applies tests in the normal
operational mode of the circuit. The key idea of SBST is to exploit on-chip
programmable resources to run normal programs that test the microcontroller itself.
Moreover, software instructions has the ability of guiding the test patterns through the
microcontroller using different testing techniques, they have detected fault coverage
percentage using fault simulator which is very expensive.



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 3

In this paper, the hybrid methodology between SBST and HBST for testing the
microcontroller is presented. It is based on a divide and conquers approach,
microcontroller components and their corresponding component operations are
identified. The knowledge of the ISA of each family constructs a test subroutine that
excite all operation for each individual module in this family including the memory,
exhaustive test patterns (based on brute force algorithm) are generated targeting
structural faults of individual microcontroller modules so there no need for fault
simulation.
This paper is organized in five sections. This section gives an introduction to the
previous work in this field. Section 2 describes the presented methodology
development phases. Section 3 summarizes the microcontroller test modules. Section
4 discusses the experimental results on two different families of microcontrollers then
it concludes the paper.

2. Presented DFT methodology

Novices in electronics usually think that the microcontroller is the same as the micro-
processor. That’s not true. They differ from each other in many ways. The first and
most important difference in favor of the microcontroller is its functionality. The
microprocessor may be used other components. Memory comes first to be added. The
microprocessor is considered a powerful computing machine; it is not adjusted to
communicating to peripheral environment. In order to enable the microprocessor to
communicate with peripheral environment, special circuits must be used. On the
other hand, the microcontroller is designed to include all in one as shown in
Figure(1). No other specialized external components are needed for its application
because all necessary circuits which otherwise belong to peripherals are already built
in it. It saves time and space needed to design a device.

Figure (1): Microcontroller Core Features.

The self-test program routines are based on the ISA of the microcontroller core.
These routines are considered as development phases, stored in the flash memory of a
microcontroller for in-the-field testing or production test. Subsequently, these test



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 4

routines are executed at speed to generate the necessary test patterns for testing the
complete set of operations performed by the components of the processor and test
results are propagated to GPIO pins of the microcontroller and analyzed using the
external portable ATE [13 - 14]. Figure (2) depicts the main phases of the presented
software-based part of the DFT methodology. These phases includes: Identification
and information extraction about microcontroller features, Instruction selection
strategy depending on observability and controllability and the last phase is operand
selection and used TPG technique.

Figure (2): DFT methodology for microcontroller test.

The information extraction and component identification phase, studies PIC
microcontroller core features and, according to divide and conquer algorithm, it was
divided to a number of main modules and collect all available information on every
module to be tested effectively. After completing this step, the microcontroller was
found that it contain (Processor – Memory – Timers – Serial Port – PWM modules –
GPIO – A/D converter (not tested in this paper)). Memory in microcontroller can be
divided into (RAM – E2PROM – Flash Memory) and the processor can be divided
into (ALU and multiplier). Using instruction selections phase that based on ISA of
the microcontroller, every module M would have a set of operations OM that module
M performs. It was denoted IM,O the set of microcontroller instructions that, during
execution, enable the same control signals and cause, module M to perform operation
O. It is evident that for each module M there is at least one microcontroller
instruction that, during its execution, causes module M to perform operation O, i.e.
IM,O ≠Ø.
The instructions which belong to the same set IM,O:

• Have different observability properties since, when operation O is performed, the
outputs of module M drive internal microcontroller registers with different
observability characteristics.

• Have different controllability properties since, when operation O is performed,
the inputs of module M are driven by internal microcontroller registers with
different controllability characteristics After identification of the set IM,O for
every module operation, select an instruction I of the set IM,O according to the
following criteria:



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 5

Criterion 1: Discard instructions belonging to IM,O that, when operation O is
performed, the outputs of module M do not propagate to an internal microcontroller
register. This means that the faulty component output cannot be propagated.
Criterion 2: Between instructions IA and IB belonging to IM,O, IA is ranked higher
priority than IB if it requires a smaller instruction sequence to propagate the outputs of
module M through the related internal microcontroller register to primary output
ports. That means that instruction IA is more easily observable than IB and should be
preferred over IB.
Criterion 3: If Criterion 2 ranks two different instructions IA and IB belonging to
IM,O, have the same priority, select the one that requires smaller instruction sequence.
Operand selections phase chooses the appropriate test patterns to use it with software
test routines in order to have high fault coverage as possible. Our methodology is
based on brute force technique for test pattern generation to achieve very high
structural fault coverage for each component in the microcontroller. If part of the test
response of a component is not driven to a well accessible internal register (that is the
case of flag outputs driving status register or special function registers) an extra
instruction sequence is required to propagate first to accessible registers and then to
primary outputs GPIO. After completing this step, test subroutines have been
developed for each of the microcontroller modules that based on the above 3 criteria
using both assembly and C programming languages.

3. Microcontroller Test Modules

The effectiveness of the presented methodology is evaluated on two different types of
microcontroller families (PIC16F87X – PIC18F4X2). Table (1) introduces the key
features of both families of microcontrollers as a result of information extraction and
component identification phase. Test subroutine for each module in microcontroller
will be introduced in the following sections.

Table (1): Microcontroller key features

Key Features PIC 16F87X PIC 18F4X2
FLASH Program Memory (14-bit words) 8K word 32K word
Data Memory 368*8 1536*8
E2PROM Data Memory 256 bytes 256 bytes
I/O Ports 5 I/O Ports 5 I/O Ports
Timers 3 4
Capture/Compare/PWM Modules 2 2
Serial Communications USART USART
multiplier - 8 * 8
Instruction Set 35 instruction 75 instruction



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 6

3.1 Memory Test

There are two main memory blocks in microcontroller. Main memory organization is
divided into flash memory and data memory. Each block has its own bus, so that
access to each block can occur during the same oscillator cycle. The data memory can
further be broken down into General Purpose RAM and the Special Function
Registers (SFRs). The SFRs used to control the peripheral modules found in the
microcontroller and RAM are used to hold data that microcontroller need during its
normal operation. This RAM can be also divided into smaller banks. Here a different
test was produced for each type of memory found in microcontroller using different
technique.
3.1.1. Flash Memory Test
Here flash memory is tested by reading it byte by byte and apply the software
multiple input shift register (MISR) [13] with primitive polynomial
(X8+X6+X5+X4+1) shown in Figure (3). The output signature is compared with
signature saved in last location of E2PROM. The saved signature was generated by
C++ program written in Visual Studio Dot Net 2010 that emulate MISR by reading
Hex file generated from the mikroC compiler for the test program. If both signatures
are equal then program is downloaded successfully and memory is tested as well.

Figure (3): MISR for Flash memory test.

3.1.1 Testing RAM

Many Functional fault models (FFMs) for memories have been introduced [18].
Some of the published work focuses on static faults. Recent published work reveals
the existence of another class of faults in the new memory technologies. It was shown
that another kind of faulty behavior could take place in the absence of static faults.
This faulty behavior, called dynamic fault, requires more than one operation to be
performed sequentially in time in order to be sensitized. For example, a write 1 (W1)
operation followed immediately by a read 1 (R1) operation will cause the cell to flip
to 0, however, if only a single write 1 or a single read 1, or a read 1 which is not
immediately applied after write 1 operation is performed, and then the cell will not
flip.
RAM faults can be divided into single-cell and multi-cell faults. Single-cell faults
consist of fault primitives (FPs) involving a single cell, while multi-cell faults consist
of FPs involving more than one cell. Data RAM is the functional memory during the
runtime of the microcontroller. When trying to test RAM as one block, it may take



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 7

long time so it was divided into smaller modules and test each module individually.
RAM can be divided into two smaller modules For PIC16F87X and five modules for
PIC18FXX2. RAM has been tested using March test algorithms [15 - 17] and output
signature is propagated to GPIO pins and read them by the portable ATE [13 - 14] or
by testing it internally and send signal to any GPIO pin that indicate that RAM has
passed test.
The March test can be defined as a sequence of March elements, where a March
element is a sequence of memory operations performed sequentially on all memory
cells. In a March element, the way from one cell to the next is specified by the
address order, which can be increasing or decreasing. For some March elements, the
address order can be chosen arbitrarily as increasing or decreasing. In a March
element, it is possible to perform a write 0 operation (W0), write 1 (W1), read 0 (R0)
and read 1 (R1) operation. The 0 and 1 after read operations represent the expected
values of the read on the output. An example of a March element is ↑ (R0; W1),
where all memory cells are accessed in an increasing address order while performing
R0 then W1 on each cell, before continuing to the next cell. By arranging, a number
of March elements one after the other, a march test is constructed. Because of their
simplicity and linearity with the memory size, all of them are in O(n).
Testing RAM using March test SS: Here a structured C subroutine based on March
test SS technique was constructed (A Test for All Static Simple RAM Faults) for
testing the RAM found in the microcontroller. For multi-cell FPs, March test SS
restrict analysis to two-cell FPs (i.e., two-coupling FPs), because they are considered
to be an important class for memory faults [15]. March test SS sequence is {↨(W0);
↑(R0;R0;W0;R0;W1); ↑(R1;R1;W1;R1;W0); ↓(R0;R0;W0;R0;W1); ↓
(R1;R1;W1;R1;W0); ↨(R0)}. It has a test length with a complexity of 22n.
Testing RAM Using March test AB: Here a structured C routine based on March test
AB was constructed. It is a state-of-the-art March test for realistic static linked faults
and dynamic faults in SRAMs technique for testing the RAM found in the
microcontroller. March test AB sequence is {↨(W0); ↑(R0;W1;R1;W1;R1);
↑(R1;W0;R0;W0;R0); ↓(R0;W1;R1;W1;R1); ↓(R1;W0;R0;W0;R0); ↨(R0)}. It has a
test length with a complexity of 22n.
Testing RAM Using March test BDN: Here a structured C routine based on March
test BDN was constructed (A new March test for Dynamic Faults) March test BDN
that is extended modified version of March test AB [17]. The newer version is able to
improve the fault coverage of March test AB. In particular, it also detects new classes
of dynamic faults, while keeping the same complexity of March test AB. March test
BDN sequence is {↑(Wa); ↓(Ra;Wb;Rb;Wb;Rb); ↓(Rb;Wa;Ra;Wa;Ra);
↑(Ra;Wb;Rb;Wb;Rb); ↑( Rb;Wa;Ra;Wa;Ra); ↨(Ra)}. It has a test length with a
complexity of complexity 22n. March test BDN still has the same coverage of March
test AB, March test BDN is able to detect the whole set of realistic static linked and
un-linked faults as well as the dynamic faults presented in [18].



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 8

3.1.2 Testing E2PROM

The E2PROM is readable and writable during normal operation. This memory is not
directly mapped in the register file space. Instead it is indirectly addressed through
the Special Function Registers. There are four SFRs used to read and write this
memory. These registers are: EECON1, EECON2 (not a physically implemented
register), EEDATA and EEADR. Here E2PROM is tested using modified algorithmic
test sequence (MATS) algorithm.  The MATS detects any combination of stuck-at
faults (SAF) in RAMs, independent of the decoder design [19]. The resulting test
sequence is {↑(W0); ↑(R0,W1); ↑(R1)}. E2PROM is tested internally and signal is
sent to GPIO pin to indicate if it pass test or not. User can use E2PROM to store
values during running application and read it after end or may use it to store pass
code for the application, so it may contain important data for the user so when testing
it, so a read for this data is done from its locations and saving it into a variable before
testing it because the methodology does not need to destroy data in E2PROM. Test
program is written in C.

3.2 Testing USART

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is
one of the two serial I/O modules (other is the SSP module). The USART is also
known as a Serial Communications Interface or SCI. The USART can be configured
as a full duplex asynchronous system that can communicate with peripheral devices
such as personal computers, or it can be configured as a half duplex synchronous
system that can communicate with peripheral devices such as A/D or D/A integrated
circuits, Serial E2PROMs etc.
In this test, first the baud rate of the USART was set to 38400 bps then its tested
simply by sending data from (0 to 255) through transmitter of USART (TX) and loop
it back again through MAX232 or through short circuit to receive it through receiver
of USART (RX) and then check if the sent data equals to received or not and the
signature is measured using the external ATE [13 – 14]. Test code for this module is
written in C language. List (1) shows the flow chart of the USART testing algorithm.
When calculating error according to equations found in microcontroller data sheet, it
was found that when using running frequency 4 MHz and baud rate 38400 bps errors
wills be 0.18%.

Desired Baud Rate = FOSC / (64 (X + 1)) (1)

X = ((FOSC / Desired Baud Rate) / 64) – 1 (2)

Error = (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate (3)

3.3 Testing GPIO



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 9

GPIO pins can be considered the simplest of peripherals. They allow the
microcontroller to monitor and control other devices. To add flexibility and
functionality to a device, some pins are multiplexed with an alternate function(s).
These functions depend on which peripheral features are on the device. In general,
when a peripheral is functioning, that pin may not be used as a general purpose I/O
pin.
In this test, all GPIO found in the microcontroller family are set to be output ports by
setting TRIS register of all PORTS to (0x00). A software loop is constructed that
send data from 0 (min) to 255 (max) to these PORTS. Some of microcontroller ports
have been used in previous tests but ports test was used to ensure that ports have been
tested using all possible combination. The signatures are measured using the external
ATE [13 – 14]. PORTB is used as an input for mode selection. Test code for this
module is written in assembly language. List (2) shows the flow chart for GPIO test.

List (1): Test USART Flow chart.

List (2) GPIO test flow chart.

3.4 Testing Timers

It is found from extracted information from step 1 that both microcontroller families
has more than one timer that can be used as timers/counters depending on external or
internal source (microcontroller clock) respectively. These timers have different sizes
(8 or 16 bits) and different prescaler, here each timer is tested in two different
prescale in order to check the functionality of the timer and it's prescale. For each
timer, SFR registers are configured to make timer depend on internal input source
(clock) It is set the initial value and prescale (1:1, 1:2 and 1:4). The timer is started
for counting and set PORTD Pins to high until timer overflow occur then deactivate



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 10

PORTD Pins to low. Here a measure for the on-time that PORTD still high using
Portable ATE [20] is done. List (3) shows the flow chart for the timer test.

List (3): Timers test flow chart.

3.5 Testing CPU

The CPU can be thought of as the “brains” of the device. It is responsible for fetching
the correct instruction for execution, decoding that instruction, and then executing
that instruction. The CPU controls the program memory address bus, the data
memory address bus, and accesses to the stack. The CPU is responsible for using the
information in the program memory (instructions) to control the operation of the
device. To operate on data memory, the ALU performs arithmetical and logical
operations, controls status bits (which are found in the STATUS register). The result
of some instructions forces status bits to a value depending on the state of the result.



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 11

Here the test subroutine is constructed that aims at structural faults from the
beginning by preparing structural tests for the components in the microcontroller's
CPU. Moreover, the instructions are not randomly chosen, but carefully crafted in
order to deliver all structural tests to the desired components. As previous
approaches, the control unit is not tested because it is tested during CPU test. The
extra instructions are used to test status bits after arithmetic and logic operations. It is
found from extracted information that microcontroller families have three basic
operations in the instruction set architecture. They are byte-oriented file register
operations, literal and control operations, and bit-oriented file register operations.
Also, it is found that PIC16F87X has 35 instructions in the ISA and PIC18FXX2 has
75 instructions in the ISA. So two subroutines contain most of the two
microcontroller instructions are developed to test all basic operations in both
processors and an 8*8 multiplier in the case of PIC18FXX2. The signatures are
measured using the external ATE [13 – 14] through GPIO.

3.6 Testing Capture/Compare/PWM modules

Both of two families contain two Capture/Compare/PWM (CCP) modules. Each CCP
has a 16-bit register which can operate as a 16-bit capture register, as a 16-bit
compare register or as a 10-bit PWM master/slave Duty Cycle register. The CCP
modules are identical in operation, with the exception of the operation of the special
event trigger. Different CCP modes depend on timers in the microcontroller. When
working in both (capture and compare) modes it uses Timer 1 and when working in
PWM mode it uses Timer 2. Here both CCP modules are tested in PWM mode in
order to test functionality and they are not tested in all modes because timers are
tested before. Here the CCP is configured to 5 KHz frequency and set the PWM duty
to 127 and let it work for 2 ms then stop it. Repeat this procedure with second CCP.
For both CCPs, the signature is taken from port C pin 1 and port C pin 2 using
Portable ATE [13-14, 20], and compare it with the fault free signature.

4. Discussion and Experiment results

List (4) and List (5) contains the integrated flow chart of the presented test
methodology that was applied on both microcontroller families using mikroC
compiler. Three testing strategies for two different families of microcontroller were
generated.  The first testing strategy is the presented hybrid DFT methodology which
combines both SBST and HBST. The other testing strategies are based on SBST, one
of them uses MISR for the TRC and the other uses LFSR for the TRC. The following
section presents the comparison between these sting strategies. This comparison is
based on memory utilization, number of clock cycles that was taken to complete each
test and the number of modules that can be tested using each of them.
Experimental results in Table (2) and Table (3) and Figures (4), (5), (6) and (7) show
that the presented methodology is superior in memory utilization, test time and can
test all microcontroller modules for both 18F4X2 and 16F87X families. The



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 12

presented charts compare between number of clock cycles taken to finish test for the
three testing strategies and the presented pie charts shows memory utilization for
them all.
Finally, its concluded that HBST is not preferable to test microcontroller and
microprocessor because of number of limitations like area and performance overhead
and SBST is practically not suitable also for microcontroller test because it cannot
test all microcontroller internal modules and when it test internal modules in
microcontrollers it cannot make sure that GPIO of the microcontroller work probably
without using external ATE. So this presented DFT methodology that uses ISA of the
microcontroller family generates test subroutines and for the TPG and part of the
BIST control unit. The external ATE is used for the other part of the BIST control
unit and for test response compaction and evaluation. So we can say that a hybrid test
methodology between SBST and HBST was created.

Table (2): Test program statistics for PIC 18F4X2

PIC
18F4X2

Crys
tal

Oscil
lator

Unit Presented
Hybrid DFT

SBST with
Compaction
Tech. using

MISR

SBST with
Compaction
Tech. using

LFSR
Used
RAM

Byte
32 (2%) 35(2%) 56 (3%)

Free
RAM

Byte
1479 (98%) 1476 (98%) 1455 (97%)

Used
ROM

Byte
2560 (7%) 2622 (8%) 4206 (12%)

Free
ROM

Byte
30207 (93%) 30145 (92%) 28561 (88%)

Clk
cycles

4 
M

H
z

count
25122732 255374762 701789720

Simulation Time 00' 25.1'' 04' 15'' 11' 41''

Tested Modules All Passed
Timers, GPIO

and CCP Failed
Timers, GPIO

and CCP Failed



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 13

Figure (4): Number of clock cycles for each test PIC 18F4X2

Figure (5): Memory Utilization for the three techniques for PIC 18F4X2

Table (3): Test program statistics for PIC 16F87X

PIC
16F87X

Crysta
l Osc. Unit

Presented
Hybrid

DFT

SBST with
Compaction Tech.

using MISR

SBST with
Compaction Tech.

using LFSR
Used
RAM

Byte
27 (7%) 30(8%) 51 (13%)

Free
RAM

Byte
341 (93%) 338 (92%) 317 (87%)

Used
ROM

Byte 1699
(20%)

1903 (23%) 2461 (30%)

Free
ROM

Byte 6492
(80%)

6288 (77%) 5730 (70%)

Clock
cycles

4 
M

H
z

count
23820098

300849152
493812776

Simulation Time 00' 23.8'' 05' 00'' 08' 13''

Tested Modules All Passed
Timers, GPIO and

CCP Failed
Timers, GPIO and

CCP Failed



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 14

Figure (6): Number of clock cycles for each test PIC 16F87X

Figure (7): Memory Utilization for the three techniques for PIC 16F87X

5. Conclusion

In this paper, the hybrid self-test methodology for microcontrollers is presented. It
achieves high structural fault coverage without performance degradation. The
methodology targets microcontroller components and applies exhaustive TPG for
every component operation. Based on divide and conquer algorithm, the
microcontroller is divided into number of main modules and construct subroutine test
for each module that excite all module operations. The exhaustive TPG technique is
used in order to have high fault coverage without fault simulator. The presented DFT
methodology that uses ISA of the microcontroller family generates test subroutines
and for the TPG and part of the BIST control unit. The external ATE is used for other
part of BIST control unit and for test response compaction and evaluation. The
presented methodology is superior in memory utilization; test time and can test all
microcontroller modules. The comparison based on clock cycles and the memory
utilization concludes that SBST is practically not suitable for microcontroller test
because it cannot test all microcontroller internal modules and when it test internal



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 15

modules in microcontrollers it cannot make sure that GPIO of the microcontroller
work probably without using external ATE.

1. References
[1] Association, S. I. (1999). "The International Technology Roadmap for

Semiconductor."
[2] T. G. Foote, D. E. H., W. V. Huott, T. J. Koprowski, B. J. Robbins and M.

P. Kusko, (1997). "Testing the 400 MHz IBM Generation-4 CMOS Chip".
International Test Conference.

[3] G. Hetherington, T. F., N. Tamarapalli, M. Kassab, A. Hassan and J.
Rajski (1999). "Logic BIST for large industrial designs: Real issues and
case studies". International Test Conference, Atlantic City, NJ,.

[4] L. Chen, S. D. (2001). "Software-Based Self-Testing Methodology for
Processor Cores". IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 20: 369 – 380.

[5] N. Kranitis, A. P., D. Gizopoulos and Y. Zorian (2002). "Effective
Software Self-Test Methodology for Processor Cores". IEEE Transaction
on Design, Automation and Test in Europe Conference and Exhibition.

[6] J. Shen, J. A. A. (1998). "Native Mode Functional Test Generation for
Processors with Applications to Self Test and Design Validation".
Proceedings of International Test Conference (ITC).

[7] K. Batcher, C. P. (1999). "Instruction Randomization Self Test for
Processor Cores". Proceedings of IEEE VLSI Test Symposium (VTS).

[8] P. Parvathala, K. M., and W. Lindsay (2002). "FRITS—A microprocessor
functional BIST method" Proceedings IEEE International Test
Conference.

[9] N. Kranitis, D. G., A. Paschalis, and Y. Zorian (2002). ,"Instruction based
self-testing of processor cores". Proceedings IEEE VLSI Test Symp.

[10] N. Kranitis, G. X., A. Paschalis, D. Gizopoulos, and Y. Zorian (2003).
“Application and analysis of RT-level software-based self-testing for
embedded processor cores". Proceedings IEEE International Test
Conference.

[11] Zhou, J. (2009). "Software-Based Self-Test under Memory, Time and
Power Constraints". Institute of Technology computer science, University
of Stuttgart. PhD.

[12] A. Paschalis, D. G. (2005). "Effective software-based self-test strategies
for on-line periodic testing of embedded processors". IEEE Transactions
on CAD. 24: 88 – 99.

[13] M. H. EL-Mahlawy, A. Seddik , “Design And Implementation Of New
Automatic Testing System For Digital Circuits Based On The Signature
Analysis.”, proceeding of the 12th ASAT Conference, 29-31 May, (2007).

[14] M. H. El-Mahlawy, A. Abd El-Wahab, A.S. Ragab, “FPGA



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 16

Implementation of The Portable Automatic Testing System for Digital
Circuits.”, Proceedings of the 6th ICEENG Conference, 27-29, May,
(2008).

[15] S. Hamdioui, A. J. v. d. G. a. M. R. (2002). “March SS: A Test for All
Static Simple RAM Faults” IEEE International Workshop on Memory
Technology, Design and Testing: 95 - 100.

[16] A. Benso, A. B., S. Di Carlo, G. Di Natale and P. Prinetto (2005). “March
AB, March AB1: New March Tests for Unlinked Dynamic Memory
Faults”. IEEE International Test Conference.

[17] Alberto Bosio, G. D. N. (2008). “March Test BDN: A new March Test for
Dynamic Faults”. IEEE International Test Conference.

[18] A. J. van de Goor, Z. A.-A. (2000). “Functional Memory Faults: A Formal
Notation and a Taxonomy”. 18th IEEE VLSI Test Symposium: 281-289.

[19] Mohamed H. El-Mahlawy, Mahmoud S. Hamed, Mohamed H. Abd-El-
Zeem, and Issa Yossef, “FPGA Implementation of the BIST IP For SRAM
Chips”, 6th International Conference of the Electrical Engineering,
Military Technical College, Egypt, 27-29 May. (2008).

[20] Mohamed H. El-Mahlawy, “A novel testing method for monostable
multivibrators”, 5th International Conference of the Electrical Engineering,
Military Technical College, Egypt, pp. EM-6-1- EM-6-11, May. (2006).



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 17

List (4): algorithm for the presented testing methodology for PIC18F4X2



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE207 - 18

List (5): algorithm for the presented testing methodology for PIC16F87X


