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Abstract:
The aim of this work is to develop an automatic system that can be used as an

assistant tool for the detection and diagnosis of different kinds of sleep Apnea
(Obstructive, Hypopnea and Central Apnea, respectively). Three nonlinear techniques
were used for feature extraction: Central tendency measures (CTM), Lempel-Ziv
complexity (LZC) and Approximate Entropy (ApEn) for oxygen saturation signals
(SaO2). A statistical Comparison using (t – test) was performed for comparing the
population mean of normal group with each of the Sleep Apnea groups for the nonlinear
parameters. Three Hidden Markov Models (HMMs), based on Baum–Welch algorithm
were proposed to estimate the  optimal number  of the parameters. The results have
showed that the use of HMM and the nonlinear features gave promising results used for
classifying Sleep Apnea diseases.
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1. Introduction:
Sleep Apnea [1], is a very common sleep disorder with an estimated prevalence from

1 to 10% in the adult and 11% in children causing: irritability, heart disease, high blood
pressure and other physiological dysfunction [2]. It is defined as a recurrent cessation of
airflow for 10 seconds or longer more than five times per sleep hour. Health studies
affirm that more than 30 of these non breathing episodes per night should be considered
abnormal [16].

There exist three kinds of Sleep Apnea: Obstructive sleep apnea (OSA), Hypopnea
and Central Apnea [2]. OSA is defined as complete cessation of airflow in the nose and
mouth associated with reduction of oxygen levels in arterial blood. The term Hypopnea
is used when the breath does not stop but decrease over 50% of its normal value
followed by 4% desaturation of haemoglobin level. Central Apnea is defined as partial
blockage of airflow associated with lack of respiratory efforts due to the failure of brain
to send appropriate signals to the respiratory muscles.

Pulse oximetry is a well-established tool routinely used in many settings of modern
medicine to determine a patient's arterial oxygen saturation and heart rate using dual
wave length finger probe to give sufficient amount of information about a person's
respiratory patterns.

Recently, Nocturnal oximetry arises as an alternative to polysomnography (PSG)
since it is readily available, relatively inexpensive and can be performed at home [4,15].
It allows monitoring arterial oxygen saturation (SaO2) during sleep which is considered
as a powerful tool for Sleep Apnea detection.

Previous studies showed that: several oximetric indexes including number of
oxyhemoglobin desaturations below a certain threshold, and the cumulative time spent
below an oxygen saturation (SaO2) of 90 % have been suffered from several limitations
[15].
      Also, spectral analysis of nocturnal oxygen saturation (SaO2) detecting the presence
of a periodogram peak within certain period couldn't be sufficient to give an accurate
diagnosis results [13,14].
      Nonlinear analysis of blood oxygen saturation (SaO2) has demonstrated to provide
useful information that help in Sleep Apnea diagnosis; improving the diagnostic
accuracy of classical oximetric indexes and spectral characteristics [6]. Central tendency
measure (CTM), Lempel-Ziv complexity (LZC)   and approximate entropy (ApEn) were
applied to quantify variability, complexity and regularity of SaO2 recordings,
respectively [9].

HMMs have proved to be a powerful and flexible class of statistical model for
describing different kinds of sequence data and representing individual component
states of a dynamic system [3]. The utility of hidden Markov models stems from their
ability to offer an effective balance between the twin data modeling issues of
complexity and tractability.The trade-off between descriptive modeling power and
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practical ease-of-use is perhaps the main reason for the success of hidden Markov
models in practice [5].
      In this work, we investigate the ability of Hidden Markov Models (HMMs) using
nonlinear analysis of SaO2 recordings to discriminate between different types of Sleep
Apnea.

2.  Subjects:
A total of 128 subjects (32 for Normal, 32 for OSA, 40 for Hypopnea and 24 for

Central Apnea, respectively) were collected from Cairo Center For Sleep Disorder
(Egypt). The Normal records were extracted from the Apneic records after treatment
using Continuous Positive Airway Pressure (CPAP) giving more classification accuracy
[2]. CPAP is the most widely recommended treatment to sleep apnea diseases, entails
wearing a mask-like device that provides constant air pressure to prevent the airway
from collapsing regardless of whether patient is breathing in or out.
      SaO2 were recorded using a dual wave length-based finger probe with a sampling
frequency of 1 Hz (one sample every second) from midnight to 8:00 AM. An example
of the overnight oximetric recordings for Normal, OSA, Hypopnea and Central Apnea
patients is shown in Fig. 1.
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Figure (1): SaO2 records from nocturnal oximetry for (a) a common Normal subject,
(b) an OSA patient, (c)  Hypopneic patient and (d) a Central Apnea patient.

3. Methods
Three nonlinear analysis methods were applied to SaO2 signals: Central tendency

measure (CTM), Lempel-Ziv complexity (LZC) and approximate entropy (ApEn).
3.A. Central Tendency Measure
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Central tendency measure (CTM) is used to quantify the signal variability using a
second-order difference plot. These kinds of scatter diagrams, given by (1), are graphs
centered in the origin and used to assess the degree of chaos in a data set, assigning
larger values to lower variability [6].
[x(n+2)-x(n+1)] versus [x(n+1)-x(n)], (1)
     CTM is computed by selecting a circle of radius ρ around the origin, counting the
number of points that fall within the radius, and dividing by the total number of points
which is N-2 using scatter plot. Then, the CTM can be computed as:
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Figure (2): Second-order difference plots for (a) a common Normal subject, (b)
an OSA patient, (c)  Hypopneic patient and (d) a Central Apnea patient.
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In the present study, CTM is computed with various radii ρ = 1, 5, 8  using 512
segments and averaging over the overnight SaO2 records which is about 8 hours (28800
samples) length for each subject [6]. Fig. 2 illustrates the second-order difference plots
for the SaO2 signals depicted in Fig. 1.
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3.B. Lempel-Ziv complexity
Lempel-Ziv complexity (LZC) is a nonparametric measure of complexity based on a

coarse-graining of the Measurements [18]. First, signal must be transformed into a finite
(0–1) binary sequence, P = s(1), s(2),..., s(n), by comparison with a median threshold
Td, then   s(i) is defined as[17]:
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                                                                                          (4)

To compute LZ complexity, the sequence P has to be scanned from left to right and
a complexity counter c(n) is increased by one unit every time a new subsequence of
consecutive characters is encountered. In the case of a (0–1) sequence, c(n) can be
normalized as follows [10]:

LZC =c(n) / b(n) , (5)
where

b(n) =n / log 2 (n) . (6)

LZC was computed using symbolic sequences of 50 samples length and averaging
for the overnight SaO2 records. A typical example of the results of the LZ complexity
evaluated From SaO2 records is shown in Fig. 3.
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Figure (3): LZ complexity evaluated on SaO2 for  (a) a common Normal subject, (b) an
OSA patient ,(c)  Hypopneic patient and (d) a Central Apnea patient.
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Table (1): Average Value For Each  Feature  From  Groups Under Study

3.C. Approximate entropy
Approximate Entropy (ApEn) quantifies the regularity in time series by measuring

the logarithmic likelihood that runs of patterns that are close (within r) for m contiguous
observations remain close (within the same tolerance r) on subsequent incremental
comparisons [9], with larger values corresponding to more irregular data. Pincus [8] ,
suggested parameter values of m = 1 and  with r a fixed value about 0.25 times the
standard deviation (S.D.) of the original time series producing good statistical
reproducibility.

Thus, in the present study, we computed ApEn with m = 1 and r equal to 0.15, 0.25
and 0.50 times the S.D. of the SaO2 signals, dividing the total night records into 50
samples segments. Table I summarizes the mean ± S.D values for each nonlinear feature
derived from Central tendency measure (CTM), Lempel-Ziv complexity (LZC) and
Approximate entropy (ApEn) analysis. Normal group shows, in average, larger CTM (ρ
=1), lower LZC and lower ApEn (r = 0.15, 0.25 and 0.50 times the S.D. of SaO2
signals). On the other hand, Apneic groups(OSA, Hypopnea and Central Apnea) show
larger CTM(ρ =5and 8),higher LZC and higher ApEn (r = 0.15, 0.25 and 0.50 times the
S.D. of  SaO2 signals).

Central
Apnea

HypopneaOSANormal

SDX ±SDX ±SDX ±SDX ±

Feature

0.515±0.1690.266±0.3050.600±0.1480.941±0.104Ctm1
0.985±0.0360.584±0.0050.922±0.0120.998±0.014Ctm5
0.990±0.0370.806±0.0100.984±0.0580.998±0.001Ctm8
0.194±0.7390.582±0.1130.415±0.6440.216±0.458LZ
0.097±0.0230.045±1.9951.168±0.0400.459±0.034Appr.15
0.035±0.0160.609±0.0250.581±0.0300.270±0.013Appr.25
0.019±0.0100.573±0.0210.452±0.0020.141±0.007Appr. 5

4. Statistical analysis
The t-test was used to determine whether there are significant differences in the

mean values of the nonlinear parameters between the normal group and each group of
Apnea subjects (OSA, Hypopnea and Central Apnea, respectively) at 5% level of

significance. For the inter-subject average values AX and NX of the parameters
concerned, and the corresponding standard deviations SDA and SDN, where NN  and
NA denote the number of subjects of  the normal  group and abnormal group,
respectively [7]. The t-test statistics is calculated as:
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The degree of freedom is
-1.NNdf AN +=          (9)

Table II shows the results of the t-test for four different groups of cases: Normal, OSA,
Hypopnea and Central Apnea, using nonlinear analysis.

Table (2): Statistical Differences  Between Different Groups Using T-Test

Between Normal
and Central

Apnea  groups

Between Normal
and Hypopnea

groups

Between Normal
and OSA groups

Feature

Probability
(p)

t-
value

Probability
(p)

t-
value

Probability
(p)

t-
value

3.002e-0044.4160.0021.5630.0011.223Ctm1
0.0091.2880.0111.1782.774e-0043.564Ctm5
0.0450.6075.921e-0033.9840.0520.946Ctm8
0.0171.7611.600e-0055.6530.0161.377LZ
0.0181.0900.0171.2541.324e-0033.908Appr.15

1.957e-0053.3120.0192.7010.0140.979Appr.25
0.0390.9970.0460.7990.0440.466Appr. 5

5. Hidden Markov Models
A hidden Markov model (HMM) is a tool to statistically  model time-varient process

with the following characterstics[20]:

1- Set of  unobserved (hidden) states Q={q1,…..,qN}, where N is the number of
hidden states in the model.

2- Set of observation symbols O={o1,…..,oL} where L is the number of distinct
emission symbol per state.

3- The transition matrix A whose elemnts aij represent the probability to go from
state qi to state qj
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4- The emission matrix B whose elemnts bjk represent the probability of emission of
a symbol ok when the system state is qj.

5- The set of initial state probability distributions Π={π1,…..,πN} whose elemnts πi
represent the probability  for qi to be the initial state.  For convenience we denote
HMM as  compact notation notation  λ={A,B, Π}.

     Under an HMM, there are two conditional independence assumptions made about
these random variables that make associated algorithms tractable [19]:

1. The tth hidden variable, given the (t-1)st hidden variable, is independent of
previous variables, or: P(Qt | Qt-1, Ot-1, …, Q1, O1)= P(Qt | Qt-1).

2. The tth observation depends only on the tth state.
        P(Ot | Qt,Ot,…, Q1, O1)= P(Ot| Qt).

The learning task in HMMs is to find, given an output sequence or a set of such
sequences, the best set of state transition and output probabilities. The task is usually to
derive the maximum likelihood estimate of the parameters of the HMM given the set of
output sequences using Baum–Welch algorithm [11]
5.A .Baum–Welch algorithm

The Baum–Welch algorithm is an example of a forward-backward algorithm, and is
a special case of the expectation-maximization algorithm. It can compute maximum
likelihood estimates and posterior mode estimates for the parameters (transition and
emission probabilities) of an HMM, when given only emissions as training data [5].

Baum-Welch algorithm implies that first initialization the set λ= {A, B,Π} with
random initial conditions. The algorithm updates the parameters of λ iteratively until
convergence, following the procedure below:

The forward procedure: We define: αi(t) = p(O1 = o1,.., ,.. ,Ot = ot, Qt = i| λ), which
is the probability of seeing the partial sequence o1,.. ,.. , ot and ending up in state i at
time t.
αi(t) can be recursively, calculated as:

1. ),(obπ(t)α 1iii = (10)

2. ,.a(t)α)(Ob1)(tα ji

N

1i
i1tjj ∑=+

=
+ (11)

      The backward procedure: This is the probability of the ending partial sequence
ot+1..., ..., oT given that we started at state i, at time t. We can efficiently calculate βi(t)
as:

1,(T)β i = (12)

∑ +=
=

+

N

1j
1tjiji ),(oba1)βj(t(t)β (13)

The following variables can be calculated using α and β, such as follows:
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Having γ and ξ, one can define update rules as follows:

(1),γπ ii =  (16)
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 (note that the summation in the nominator of (k)b
__

i  is only over observed symbols equal
to ok ). Using the updated values of A, B and π, a new iteration is preformed until
convergence.
5.B. Training HMM

The Baum–Welch algorithm was used to train HMMs, one for each type of Sleep
Apnea, using the training data set [3]. Three models with different number of hidden
state N= {5, 7, 13} were used for each Sleep Apnea type.

A separate Model was defined for each class of patterns. Maximum likelihood
classification of an unknown observation sequence can be achieved by calculating the
probability of the observations given the model P(O/λ) for each model in turn.

The unknown Pattern is assigned to the class of the model
that has the highest  probability of generating the observed data;
 that is for M classes C=c1, c2,…cM, where cm is represented by
 model λm then O is assigned to the class cm if

)dP(O/λ
M

1d
maxP(O/λ(

=
= (19)

Table 3  illustrates the results of classifications obtained using HMM models of order
5, 7, and 13. It revealed average classification rate reached about 98. 43 % using HMM
model of order 13 for the nonlinear features.



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE030 - 10

HMMs
Order

Normal OSA Hypopnea Central
Apnea

Average
Classification
Rate

5 16/12 16/14 20/14 12/11 79.68%
7 16/12 16/15 20/18 12/10 85. 93%
13 16/15 16/16 20/20 12/12 98. 43%

Table (3): Classification Results Of HMM With Orders 5,7 And 13

6. Results
Figs. 1 (a), (b), (c) and (d) display the overnight oximetric recordings for a Normal,

OSA, Hypopnea and Central Apnea patients, respectively. The mean saturation level of
Normal SaO2 signals is about 95 while the mean level of other Apneic records is almost
less than 90.

Figs. 2 (a), (b), (c) and (d) show the second-order difference plots for the SaO2
signals depicted in Fig. 1. It is clear that dispersion of Hypoponeic signals is greater
than OSA which is greater than Central Apnea and Normal subjects, respectively. This
confirms the results in Table I where CTM1 for Normal subject has higher values
compared with OSA, Central Apnea and Hypoponeic patients. This means that: Normal
subjects have the lowest variability. Increasing the value of radii ρ would noticeably
increase values of CTM5 and CTM8 for Hypoponeic, OSA and Central Apnea patients.

Figs. 3 (a), (b), (c) and (d) show the results of the LZ complexity evaluated from
SaO2 signals. It is clear that, Hypoponeic signals have the highest values of LZC while
Central Apneic subjects have the lowest one.

Table 1 also indicates that the Approximate Entropy (ApEn) using different values of
r is always greater for Hypopnea and OSA when compared with Central Apnea and
Normal subjects. This means that irregularity of Hypopnea and OSA records is greater
than Central Apnea and Normal subjects.

A statistical Comparison using (t – test) was performed for comparing the population
mean of Normal group with OSA group, Normal group with Hypopneic group, and
Normal group with Central Apnea patients group, respectively.
    Table 2 shows the results of the t-test for four different groups of cases, using
nonlinear features. It can be seen that there are significant differences in some
parameters in the case of OSA, Hypopneic and Central Apnea groups.
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The parameters: CTM5 and Appr.15   are significantly different for OSA group.
Therefore, these parameters can be considered as discriminating parameters for OSA
cases.
 Similarly, the parameters CTM8 and LZ are considered  as discriminating parameters
for Hypopneic group, and CTM1 and Appr.25 for Central Apnea group.

Baum–Welch algorithm was used for training HMMs, applying the  hold-out method
[12], where 50% of the 128 SaO2 records were used for training, that is 64 records (16
for Normal, 16 for OSA, 20 for Hypopnea and 12 for Central Apnea) ,and the other 64
records were  used for testing stage.

Table 3  illustrates the results of classifications obtained using HMMs of orders 5, 7,
and 13. It revealed average classification rate reached about 98. 43 % when using
HMM model of order 13 for the nonlinear features.

7. Conclusion

Since Sleep Apnea diseases (cause a change in the dynamics of the oximetry system
and consequently the physical measured observation sequences have different statistical
linear and nonlinear prosperities therefore, it is convenient to develop HMM classifiers
with different orders to detect three types of Sleep Apnea (OSA, Hypopnea and Central
Apnea) .

In this the present work, nonlinear features extracted from central tendency measure
(CTM), Lempel-Ziv complexity (LZC) and approximate entropy (ApEn) were used to
characterize SaO2 recordings from 128 subjects (32 for Normal, 32 for OSA, 40 for
Hypopnea and 24 for Central Apnea).

In an attempt to achieve dimensionality reductions of features and to assess the
diagnostic ability of each nonlinear feature for discriminating between normal subject
and different Apneic groups,  a statistical comparison using (t – test) were  performed.

It has been shown that the most discriminating parameters for Each group of sleep
apnea were: CTM5 and Appr.15   for OSA group, CTM8 and LZ for Hypopnea  group
and CTM1and Appr.25 for Central Apnea group.

For the classification stage, three HMMs with different number of hidden states
N={5,7,13 }, were designed and tested. The Baum–Welch algorithm was used to train
HMMs, using the hold-out method.
     In summary, it has been concluded that the adopted nonlinear analysis and the HMM
methodologies are promising as assistant tools in the diagnostic ability of SaO2 from
nocturnal oximetry to detect sleep Apnea diseases. Further work is required to apply our
methodology to a larger data set with a wide spectrum of sleep-related breathing
disorders.
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