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Abstract:

In the present paper, the time varying flow of a dusty viscous incompressible
conducting non-Newtonian Casson fluid through a circular pipe is studied considering
the Hall effect.  A constant pressure gradient in the axial direction and a external
uniform magnetic field perpendicular to the flow direction are applied.  A numerical
solution is obtained for the governing nonlinear equations using finite differences and
the effect of the different physical parameters on the velocity distributions of fluid and
dust particles are reported.
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1. Introduction:

The flow of a dusty conducting fluid inside an infinite circular pipe in the presence of a
transverse magnetic field has many applications such as magnetohydrodynamic (MHD)
generators, pumps, accelerators, and flowmeters etc.  The performance and efficiency of
these devices are affected by the existence of solid particles in the form of ash or soot as
a result of the corrosion and wear activities and/or the combustion processes in MHD
generators and plasma MHD accelerators.  If the particle concentration becomes high,
mutual particle interaction leads to higher particle-phase viscous stresses and can be
accounted for by endowing the particle phase by the so-called particle-phase viscosity.
Many studies deal with theoretical modeling and experimental measurements of the
particle-phase viscosity in a dusty fluid (Soo 1969, Gidaspow et al. 1986, Grace 1982,
and Sinclair et al. 1989).

The flow of an electrically conducting fluid in a circular pipe has been
investigated  by many resaerchers (Gadiraju et al. 1992, Dube et al. 1975, Ritter et al.
1977, and Chamkha 1994). Gadiraju et al. (1992) studied the steady two-phase vertical
flow in a pipe. Dube et al. (1975) and Ritter et al. (1977) investigated solutions for
unsteady dusty-gas flow in a circular pipe in the absence of a magnetic field and
particle-phase viscous stresses. Chamkha (1994) obtained exact solutions which
generalize the results reported in Dube et al. 1975 and Ritter et al. 1977 by the inclusion
of the magnetic and particle-phase viscous effects where the Hall effect is neglected.

A number of practically important fluids in industry such as molten plastics,
polymers, pulps and foods have non-Newtonian fluid behavior (Nakayama et al. 1988).
Due to the growing use of these non-Newtonian materials, in various manufacturing and
processing industries, efforts are directed to understand their flow characteristics.  Many
of the inelastic non-Newtonian fluids, encountered in chemical engineering processes,
are known to follow the so-called "power-law model" in which the shear stress varies
according to a power function of the strain rate (Metzner et al. 1965).

In the present paper, the unsteady flow of a dusty viscous incompressible
electrically conducting non-Newtonian Casson fluid through a circular pipe is
investigated considering the Hall effect.  The particle phase is assumed to be
incompressible pressureless and electrically non-conducting.  The flow in the pipe starts
impulsively from rest through the application of a constant axial pressure gradient.  The
governing nonlinear momentum equations for both the fluid and particle-phases are
solved numerically using finite differences.  The effect of the Hall current, the non-
Newtonian fluid characteristics and the particle-phase viscosity on the velocity of the
fluid and particle-phases are reported and discussed.
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2. Governing Equations:

Consider the time varying and axisymmetric horizontal flow of a dusty electrically
conducting non-Newtonian Casson fluid through an infinitely long circular pipe of
radius d driven by a constant pressure gradient in the axial direction.  A uniform
magnetic field is applied perpendicular to the flow direction.  The Hall current is taken
into consideration but the magnetic Reynolds number is assumed to be very small,
consequently the induced magnetic field is neglected (Sutton et al. 1965). We assume
that both phases behave as viscous fluids and that the volume fraction of suspended
particles is finite and constant (Chamkha 1994). Therefore the governing momentum
equations are given as
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where t is the time, r is the distance in the radial direction, V is the fluid-phase velocity,
Vp is the particle-phase velocity, ρ is the fluid-phase density, ρp is the particle-phase
density, ∂P/∂z is the fluid pressure gradient, φ is the particle-phase volume fraction, N is
a momentum transfer coefficient (Chamkha 1994), σ is the fluid electrical conductivity,
m=σβBo  is the Hall parameter, β is the Hall factor (Sutton et al. 1965), Bo is the
magnetic induction, μp is the particle-phase viscosity which is assumed constant, and μ
is the apparent viscosity of the fluid which is given by,
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where Kc is the coefficient of viscosity of a Casson fluid, τo is the yield stress, and
rV ∂∂ /  is the magnitude of the velocity gradient which is always positive regardless of

the sign of rV ∂∂ / .  In this work, ρ, ρp, μp, φ, and Bo are all constant.
The initial and boundary conditions of the problem are given as
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Introducing the following dimensionless variables and parameters

,
),(

),(,
),(

),(,,
)1(

,,,
222 dG

trVK
trV

dG

trVK
trV

K
k

z

P
G

d

tK
t

d

r
r

o

pc
p

o

c

c

p
o

c ===
−

=
∂
∂−=== 




 cKNd /2 =  is

the inverse Stoke's number,
cp K/ =  is the viscosity ratio,

dGooD / =  is the Casson number (dimensionless yield stress),

coa KdBH /=  is the Hartmann number (Sutton et al. 1965).

Equations (1)-(3) can be written as (the bars are dropped for simplicity)
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The volumetric flow rates and skin-friction coefficients for both the fluid and particle
phases are defined, respectively, as (Chamkha 1994)
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3. Results and Discussion:

Equations (4) and (5) represent a coupled set of nonlinear partial differential equations
which are solved numerically under the initial and boundary conditions (6), using the
finite difference method.  A linearization technique is first applied to replace the
nonlinear terms at a linear stage, with the corrections incorporated in subsequent
iterative steps until convergence is reached.  Then the Crank-Nicolson implicit method
(Evans et al. 2000) is used at two successive time levels. An iterative scheme is used to
solve the linearized system of difference equations where the solution at a certain time
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step is chosen as an initial guess for next time step and the iterations are continued till
convergence, within a prescribed accuracy.  Finally, the resulting block tridiagonal
system is solved using the generalized Thomas algorithm (Evans et al. 2000).
Computations are carried out for α=1 and k=10. Grid-independence studies show that
the computational domain 0<t<∞ and 0<r<1 can be divided into intervals with step sizes
Δt=0.0001 and Δr=0.005 for time and space respectively.

Figures 1-4 present the variation with time of the profiles of the velocity of the
fluid V and dust particles Vp, respectively for different values of the Bingham number τD

and the Hall parameter m and for Ha=0.5 and β=0.5. Both V and Vp increase with time
but V reaches the steady-state faster than Vp for all values of τD.  It is clear from the Figs.
that increasing τD increases both V and Vp while its effect on their steady-state times can
be ignored.  It is clear from the figures that increasing m increases V and, in turn, Vp due
to the decrease in the effective conductivity (σ/(1+m2)) which reduces the damping
magnetic force on V.  It is shown that the influence of the Hall parameter m on V is
more apparent for higher values of τD.

Table 1 presents the steady state values of the fluid-phase volumetric flow rate Q,
the particle-phase volumetric flow rate Qp, the fluid-phase skin friction coefficient C,
and the particle-phase skin friction coefficient Cp for various values of the parameters τD

and m and for Ha=0.5 and β=0.5. It is clear that increasing the parameter m increases
Q, Qp, C, and Cp for all values of τD.  It is also shown that increasing τD increases Q, Qp,
C, and Cp for all values of m.

Table 2 presents the steady state values of the fluid-phase volumetric flow rate Q,
the particle-phase volumetric flow rate Qp, the fluid-phase skin friction coefficient C,
and the particle-phase skin friction coefficient Cp for different values of the  parameters
m and β and for Ha=0.5 and τD=0. It is clear that, increasing m increases Q, Qp, C, and
Cp for all values of β and its effect becomes more apparent for smaller values of β.
Increasing the parameter β decreases the quantities Q, Qp, and C, but increases Cp for all
values of m.
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Figure (1): Time development of the profile of V for various values of τD(m=0, Ha=0.5,
β=0.5)
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Figure (2): Time development of the profile of V for various values of τD(m=1, Ha=0.5,
β=0.5)
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Figure (3): Time development of the profile of Vp for various values of τD(m=0,
Ha=0.5, β=0.5)
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Figure (4): Time development of the profile of Vp for various values of τD(m=1,
Ha=0.5, β=0.5)
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Table (1): The steady state values of Q, Qp, C, Cp for various values of m and τD

τD=0 m=0 m=1 m=2
Q 0.1763 0.1779 0.1789

          Qp 0.0425 0.0429 0.0432

        C 0.2817 0.2833 0.2843

         Cp 0.2106 0.2125 0.2136

         τD=0.025 m=0 m=1 m=2
Q 0.1669 0.1684 0.1693

          Qp 0.0403 0.0406 0.0408

        C 0.2671 0.2686 0.2695

         Cp 0.1995 0.2012 0.2022

         τD=0.05 m=0 m=1 m=2
Q 0.1576 0.1589 0.1597

          Qp 0.0379 0.0383 0.0385

        C 0.2523 0.2537 0.2546

         Cp 0.1883 0.1899 0.1908
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Table (2): The steady state values of Q, Qp, C, Cp for various values of m and β

         β=0 m=0 m=1 m=2
Q 0.2653 0.2686 0.2706

          Qp 0.1975 0.1997 0.2009

        C 0.3759 0.3791 0.3811

         Cp 0 0 0

         β=0.5 m=0 m=1 m=2
Q 0.1763 0.1779 0.1789

          Qp 0.0425 0.0429 0.0432

        C 0.2817 0.2833 0.2843

         Cp 0.2106 0.2125 0.2136

         β=1 m=0 m=1 m=2
Q 0.1640 0.1654 0.1662

          Qp 0.0226 0.0228 0.0229

        C 0.2702 0.2716 0.2724

         Cp 0.2231 0.2249 0.2260

6. Conclusions:

The time varying MHD flow of a particulate suspension in a conducting non-Newtonian
Casson fluid through a circular pipe is studied considering the Hall effect.  The
governing nonlinear partial differential equations are solved numerically using finite
differences.  The effect of the magnetic field parameter Ha, the Hall parameter m, the
non-Newtonian fluid characteristics (Bingham number τD), and the particle-phase
viscosity β on the distribution of the velocity, volumetric flow rates, and skin friction
coefficients of both fluid and particle-phases is reported.  It is seen that increasing the
magnetic field decreases the fluid and particle velocities, while increasing the Hall
parameter increases both velocities.  Increasing the parameter m increases Q, Qp, C, and
Cp for all values of τD.  The effect of the Hall parameter on the quantities Q, Qp, C, and
Cp becomes more pronounced for smaller values of β.
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Nomenclatures:

ρ …
ρp …
φ …
σ …
β …
μ …

μp …
τo …
Bo …
d …

Kc ...
m…
N…
r…
t…
V…
Vp…

the fluid-phase density
the particle-phase density
 the particle-phase volume fraction
the fluid electrical conductivity
the Hall factor
the apparent viscosity of the fluid
the particle-phase viscosity
the yield stress
the magnetic induction
circular pipe of radius
the coefficient of viscosity
the Hall parameter
a momentum transfer coefficient
the distance in the radial direction
time
the fluid-phase velocity
the particle-phase velocity


