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Abstract:

Fault tolerance is an important property in grid computing as the
dependability of individual grid resources may not be able to be guaranteed.
Common fault tolerance techniques in distributed systems are normally
achieved with checkpoint recovery, message logging with checkpointing, or
through task replication on alternative resources in cases of a system outage.
In this paper, we present a mailbox-based non-blocking minimum processes
coordinated checkpoint protocol for hierarchical grid. In our grid model,
processes on different processors communicate indirectly by sending
messages over the network through mailbox-based technique at a shared
node. The mailbox of each process can be exploited as an events logger since
it logs the messages sent to the process in strict FIFO order. The main
advantages of our approach are achieving more parallelism and suiting the
highly dynamic environment where processes frequently migrate from one
node to another.
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1. Introduction:

The emergence of grid computing further increases the importance of fault tolerance.
Grid computing will impose a number of unique new conceptua and technical
chalenges to fault-tolerance researchers. Some of the factors due to which the
probability of faultsin a grid environment is much higher than a traditional distributed
system are lack of centralized environment, predominant execution of long jobs, highly
dynamic resource availability, and diverse geographica distribution of resources and
heterogeneous nature of grid resources. Thus, fault tolerance related features must be
incorporated in grid job scheduling to improve the performance of the grid system [1].

Checkpoint-restart is the ability to save the state of the running application at a given
point in time such that it can be restored at a later time at the exact same point at which
it was saved. Checkpoint-restart has tremendous potential benefits for grid computing
environments, including fault resilience by migrating applications out of faulty Grid
nodes, fault recovery by restarting from the last checkpoint instead of from scratch,
improved resource utilization by being able to checkpoint resource-intensive jobs when
load is high and restarting such jobs again later when the load is lower, dynamic load
balancing by migrating application processes to less loaded Grid nodes, and improved
service availability and administration by checkpointing applications processes before
grid node maintenance and restarting them on other cluster nodes so that applications
can continue to run with minimal downtime[2].

A global state of a message-passing system is a collection of the individual states of all
participating processes and of the states of the communication channels. Intuitively, a
consistent global state is one that may occur during a failure-free, correct execution of a
distributed computation. More precisely, a consistent system state is one in which, if the
state of a process reflects a message receipt, then the state of the corresponding sender
reflects sending that message. For example, figure 2 shows two examples of global
states.

Figure (1): (a) consistent state (b) inconsistent state

On the other hand, in message logging approach the processes that are participating in a
distributed computation take checkpoints (independent checkpoints) and log the
messages that they exchange during failure-free operation. When a failure occurs, a
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recovery algorithm uses the message logs and checkpoints available on stable storage to
compute a consistent state [3] to which the processes roll back. It has been argued that
such a design results in better failure-free performance than coordinated checkpointing
because it avoids the overhead of synchronizing the checkpoints to form a consistent
state. This premise istrue for environments where communication is expensive, because
the incremental cost of logging then becomes small, while the message exchanges
necessary to synchronize the checkpoints add substantial overhead [4]. However, the
cost of network communication these days is small and rapidly decreasing. Meanwhile,
the cost of accessing stable storage remains high because of the mechanical nature of
disks, which are the media of choice for implementing stable storage because of the cost
per capacity advantage over other techniques. Recent experiments [5] have indicated
that the difference in performance between coordinated and independent checkpointing
becomes marginal in workstation clusters.

In this paper, we present a mailbox-based non-blocking minimum processes coordinated
checkpointing based on hierarchical computational grid, where workstations and
computation nodes can be grouped into several sites according to their physical
locations. The proposed checkpointing algorithm, which uses the mailbox, enables the
grid with highly dynamic and non dedicated resources to complete the jobs within
specified deadline. Major contributions of our new technique include:

- The number of processes that take checkpoints is minimized, resulting in a
reduction in stable storage access and enhanced performance.

- Our approach exploits the mailbox as a logger aiming also to reduce the
frequently access to stable storage to enhance performance. Also, the
communication overhead is minimized since the process suspends its
computations only during taking a tentative checkpoint, after that, the process can
receive/send a computation message from/to another process.

- The messages sent to the faulty process during its migration will not be lost. They
will be kept in its mailbox and the process will pull them after restarting on the
new resource.

The paper is structured as follows. In Section 2, we present literature review. In Section
3, we introduce our communication model and checkpointing protocol. In Section 4,
proof of Correctnessis presented, and finally in Section 5 we conclude the paper.

2. Background:

Numerous approaches to checkpointing and rollback recovery were proposed in the
literature for the field of message-passing distributed systems. The variety of existing
algorithms are classified according to their main operating principles.
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2.1 Coordinated checkpointing:

This approach has been introduced by Chandy and Lamport [3]. In this approach, the
checkpointing is orchestrated such that the set of individual checkpoints always result in
a consistent global checkpoint. Coordinated checkpointing algorithms are made up
using the following scheme [6][7].

2.1.1 Blocking coordinated checkpointing

In this approach, the coordinated checkpoint processes are synchronized before the local
checkpoints in order to ensure a clean communication channel [9]. A coordinator
broadcasts a checkpoint request for every process. When a process receives such a
request, it stops its execution, flushes its communication channels, takes a local
checkpoint, and sends an acknowledgement message back to the coordinator. After that
the coordinator collects acknowledgements from all processes, and broadcasts a commit
message to complete the two-phase checkpoint protocol. Upon receiving the commit
message, each process marks its local checkpoint as a new recovery line. Then the
process resumes execution and exchanges messages with other processes [8].

2.1.2 Non-blocking coordinated checkpointing:

The performance overheads of the blocking coordination are difficult to avoid. That is
why in practice a non-blocking scheme is preferred [9]. This protocol is also known as
the Distributed snapshot protocol and was also proposed by Chandy and Lamport in
1985[3]. The initiator takes a checkpoint and broadcasts a marker (i.e. a checkpoint
request) to al processes. Each process takes a checkpoint upon receiving the first
marker and rebroadcasts the marker to al the other processes before sending any
application message. The underlying assumption is that the communication channels are
FIFO based and reliable. If the channels are non-FIFO, the marker can be piggybacked
on every post-checkpoint message. Alternatively, checkpoint indices can serve as
markers, whereby a checkpoint is triggered if the receiver’s local checkpoint index is
lower than the piggybacked checkpoint index [10].

2.1.3 All processes checkpointing:

This requires all processes in the system to participate in every checkpointing session

[6].
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2.1.4 Minimum processes checkpointing:

These agorithms force only those processes, which communicated with the initiator
directly or indirectly since their last checkpoint, to take new checkpoints [6].

2.2 Uncoordinated (independent) checkpointing:

In this approach, which is also called asynchronous checkpointing, each process that is
part of an application saves its state whenever it wants to, without coordinating with
other processes [7]. During restart, the consistent global state has to be searched by
tracking the dependencies from the stable storage. The main advantage of this approach
isthat there is no need to exchange any control messages during checkpointing. But this
requires each process to keep several checkpoints in stable storage and there is no
certainty that a global consistent state can be built [10]. Also, in this method each
process can make a checkpoint when its state is small. However, there are two main
disadvantages. First, there is a possibility of rollback propagation which can result in a
domino effect. Second, the possibility of rollback propagation requires the storage of
multiple checkpoints for each process.

2.3 Communication-induced checkpointing:

This approach is a compromise between coordinated and uncoordinated checkpointing.
To avoid a domino effect that can result from independent checkpoints of different
processes, a consistent global state is achieved by forcing each process to take
additional checkpoints based on some information piggybacked on the application
messages [11].The disadvantage of this approach is the possibly large number of forced
checkpoints and the overhead associated with storing them.

2.4.1. og-based rollback recovery:

It combines checkpointing with logging of nondeterministic events. Log-based rollback
recovery relies on the piecewise deterministic (PWD) assumption, which postul ates that
al nondeterministic events that a process executes can be identified and that the
information necessary to replay each event during recovery can be logged in the event’s
determinant [10].

Log-based rollback-recovery protocols guarantee that upon recovery of al faled
processes, the system does not contain any orphan process, that is, a process whose state
depends on a nondeterministic event that cannot be reproduced during recovery. The
way in which a specific protocol implements this condition affects the protocol’s
failure-free performance overhead, latency of output commit, and ssmplicity of recovery
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and garbage collection. There are three flavors of these protocols[10] :

2.4.1. Pessmistic Log-based rollback recovery protocols:

They guarantee that orphans are never created due to afailure. These protocols simplify
recovery, garbage collection and output commit, at the expense of higher failure free
performance overhead [10].

2.4.2. Optimistic log-based rollback recovery protocols:

They reduce the failure-free performance overhead, but allow orphans to be created due
to failures. The possibility of having orphans complicates recovery; garbage collection
and output commit [10].

2.4.3. Causal log-based rollback recovery protocol :

They attempt to combine the advantages of low performance overhead and fast output
commit, but they may require complex recovery and garbage collection [10].

3. Related work:

Minimum-process blocking algorithms have the lowest synchronization overhead in
the comparison of all-process blocking algorithms. The algorithms proposed in Koo-
Toueg [12], Cao- Snghal [13] have the lowest among the blocking algorithms, [14] tries
to minimize the number of synchronization messages and the number of checkpoints
during checkpointing. In algorithm [12], if any of the relevant process is not able to take
its checkpoint in an initiation, the entire checkpointing process of that particular
initiation is aborted. Kim and Park [15] proposed an improved scheme to address
failures during checkpointing. It alows the new checkpoints in some subtrees to be
committed. Cao and Snghal [13] proposed minimum-process blocking algorithm for
mobile systems. In this algorithm, blocking time is significantly reduced as compared to
[12]. Prakash-Singhal algorithm [16] forces only a minimum number of processes to
take checkpoints and does not block the underlying computation during checkpointing.
Elnozahy and Zwaenepoel [4] proposed a message logging protocol which uses
coordinated checkpointing with message logging. The combination of our non-blocking
minimum coordinated checkpointing with message logging using the mailbox queues as
events loggers leads to better failure-free performance, low storage and communication
overheads, also, only the failed processes need to roll back from their last saved
checkpoint and then they can replay the messages from their associated mailbox to
reach the pre-failure state.
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4. Our communication model and checkpoint protocol:

In this section new transparent coordinated non-blocking checkpointing agorithm that
ensures producing global consistent checkpointsis presented.

4.1 System model and application definitions:

Grid computing is a means of allocating the computational power of a large number of
computers to complex difficult computation or problem. Grid computing is a distributed
computing paradigm that differs from traditional distributed computing in that it is
aimed toward large scale systems that even span organizational boundaries.

In this paper, our grid model is based 4-level hierarchical and distributed scheme as
shown in Figure (1). The proposed grid consists of severa zones each with many sites.
The site in a zone consists of several heterogeneous workstations which that can be
grouped according to their physical locations. In our model, at the top of our
hierarchical model tree - level 3, thereis a Super Grid Scheduler (SGS) in the super grid
master node to which the users submit their jobs, in level 2 there are zone schedulersin
zone master node, sites schedulersin leve 1, and at the level 0 home schedulers run on
each computing resources.

In our model, processes of a particular job on different processors only communicate
indirectly by sending messages over the network through mailboxes which are
dynamically created in mailbox pool which resides at a Site, zone or super grid master
node before dispatching the job to the selected resources as illustrated below in next
subsection.

Super grid master node

Mailbox
Level 3 Super Grid Schedu Pool
SGS

Zone1 master node Zone z master node

Level 2

sche ]
Site master node Site master node Site maste pwz/ Site master node

Site Mailbox 'e Mailbox sch d le Mailbox Site N'I II:IoJ(
Pool uler Pool Pool sche d le:

levell

SS

AR

Figure (2): The hierarchical architecture of computing grid
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4.2 Our mailbox-based communication scheme:

In our scheme, before dispatching the processes to selected resources, each process is
assigned a mailbox queue by scheduler at the master node which has al selected
resources under its control to buffers the messages sent to it. For example if al the
selected resources are in a single site, the mailboxes for all processes of the job are
created in mailbox pool which residing at that site master node which is different from
the nodes where those processes will be executed. Inter-process communication
between processes can occur as follow:

» Transmission of a message from the sender to the receiver’s mailbox: If a process
P, wants to send a message m, to a process 7, it sends the message to the shared port at
the master node where the communication daemon in turn, puts the received message in
the mailbox of 7, .

* Delivery of the message from the mailbox to its owner process: The receiving process
can use a push or pull operation to obtain the message from the mailbox as illustrated
below:

Push (PS). The mailbox keeps its owner process’s address and forwards every message
to it. Although message queriesincur no costs, the scheduler must notify the mailbox of
the current location of its owner process after scheduling or rescheduling process. PS
mode is needed if real-time message delivery is required.

Pull (PL). The process retrieves messages from its mailbox queue (in order) whenever
needed. The mailbox doesn’t need to know the process’s current location, thus avoiding
location registration, but the process must query its mailbox for messages. Although
polling messages would increase message delivery overhead, it ensures reliable message
delivery and very useful technique in migration.

In this paper we will use the pull (PL) operation in which the primitive get (addr,
mailbox [y]) is used to retrieve messages from the mailbox. Thus, if a process wants to
retrieve amessage, it pullsthe one at the top location of its mailbox queue.

Mailbox of P; my | My

ple
4
02e m/ \ V Mailbox of P,
03 \Q2 \{3 Mailbox of P; m3 | m2
@

(b)

Figure (3): (a) A part of an application’s execution (b) Mailboxes pool view.
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4.3 Notation, Definitions and Assumptions:

In our checkpointing algorithm we use the following definition:

Definition 1: task or process is the minimum computing unit of ajob; i.e. Job consists of
N dependent processes.
Definition 2: applicationisan arbitrary job: Jo={p,, P,,P,, ....Py_1}.
Definition 3: the x,, local checkpoint of a process P, is denoted asc, , .
Definition 4: the checkpoint request message is denoted as chkpt-req.
Definition 5: the commit message request is denoted as commit-reg, and the discard
request is denoted as abort-req.
Definition 6: min-group{ } contains the processes that are communicated since last
committed checkpoint, and num-group { } contains the corresponding counters of the
messages for each process including in min-group{ }, which the process must receive
before taking the new tentative checkpoint (these counters contain the number of
messages sent to each process p; (1 min-group{ } since their last committed checkpoint).
Definition 7: 5, and R; represent the total sent and received by a process p; since last
committed checkpoint.
Definition 8: we assume that the computation messages format includes two fields for
the sender and receiver IDs as SPid and RPid respectively.
Definition 9: SSN is a sequence number of messages sent by the process. This is used
for duplicate message suppression during recovery. Distributed systems that do not
provide fault tolerance typically already require such a sequence number for suppression
of duplicate messages.
We have made the following assumptions

1- Checkpoint coordinator and communication daemon at master node does not fail.

2- A separate monitoring software system is used to monitor continuously the failure
of afault tolerant MPI application.

3- Communication failures do not partition the network.

4- The job is submitted to the super grid scheduler which interacts with zones
schedulers to decide whether the job will be execute inside single site, multisite
within single zone, or in multi zones.

5- Our scheme is built on top of a reliable network communication layer, which
guarantees that messages will not be lost during transmission and will be
delivered between nodes.
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4.4 The checkpointing protocol:

1- Before the job’s tasks are dispatched to the selected resources, the site, zone, or
super grid zone scheduler, which all selected resources are located under its
control, will create a dynamic mailbox queue for each task at mailbox pool, and
then initialize the checkpoint coordinator at the same master node.

2- The communication daemon, which is an intermediate party resides at the master
node of the selected location, is responsible of receiving messages from sending
processes and putting them in corresponding mailbox of receiving processes, and
constructing min-group{ } & num-group { } where the min-group{ } contains the
processes that are communicated since last committed checkpoint, and num-group
{ } contains their counters of the messages which they must receive before taking
the new tentative checkpoint (since their last committed checkpoints).

3- The checkpoint coordinator, during the first phase, triggers the communication
daemon (using a shared flag) which in turn, sends the min-group { } & num-group
{ } to the coordinator before receiving any extra messages. Then the coordinator
send the checkpoint request (chkpt-reg, num) to each p; [/ min-group{ } and
attaches with it the corresponding counter of the messages num each process
must receive before taking a new checkpoint. When a process pi receives this
message, it compares num with its local counter R, if they are equal it takes a
tentative checkpoint which includes the index y which points to the location of the
mailbox gqueue corresponding to the entry immediately following the checkpoint,
and then sends back to the coordinator the “ready” message along with the
number of messages sent (S) since the last committed checkpoint. But if num
isn’t equal its local counter, the process waits for receiving the rest messages
(num; minus the local counter) and then takes a tentative checkpoint and responds
as above. But if the process couldn’t take a tentative checkpoint (or the
checkpoint timer timeout), it responds with “not-ready” message.

4- |If the coordinator receives “ready” from each p; [1 min-group{ } which
participated in this checkpoint and Xi=0S: matches Zi=oR: where
2o Ri= Ziomumi gnd n s the number of processes in min-group{ }, it sends
“commit-req“ to each p; 0 min-group{ } that completes the two-phase
checkpointing protocol. Otherwise, it sends them the “abort-req”.

5- Finally, If each p; [" min-group{ } receives “commit-req” massage, it removes the
old checkpoint and atomically makes the tentative checkpoint permanent.
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4.5 The advantages:

The proposed protocol exploits the mailbox of each process as logging storage since the
messages, sent to that process, are implicitly stored in its mailbox in strict FIFO. This
combination offers several advantages including:

First, since the messages sent to any process is stored in its mailbox in strict FIFO
order, there is no need to save message data or any dependency information to stable
storage or elsewhere. Second, the number of processes that take checkpoints is
minimized, resulting in a reduction in stable storage access and enhanced performance.
Also, the communication overhead is minimized since the process suspends it
computations only during taking a tentative checkpoint, after that, the process can
receive/send a computation message from/to another process. Third, no explicit garbage
collection algorithm is needed. Events that occurred before the last consistent
checkpoint will never be rolled backed, so it can delete from the mailboxes. Fourth, the
use of coordinated checkpointing guarantees that processes never roll back beyond their
latest checkpoint. This new design thus offer a better bound on recovery time and
requires only one permanent checkpoint per process to be maintained on stable storage.
Fifth, the messages sent to any process cannot be lost due to migration and they kept in
the mailbox.

These lead to better performance and improve the scalability which makes it more
suitable for grid environment.

4.6 Proof of Correctness:

Theorem 1: our proposed checkpointing protocol presented in subsection 4.4 produces a
global consistent checkpoint.

We use proof by contradiction to prove theorem 1. Let us assume that the last obtained
checkpoint is inconsistent. This means either one of the following two scenarios have
taken place:

1. Process p; sent a message after taking a checkpoint and this message is polled at
process p; before it takes checkpoint. This means this message will be included in
checkpoint for p; but not in the checkpoint for p.. By going back to the algorithms, we
find a contradiction since the total number of messages num which a process p; must
receive before taking a checkpoint (since its last committed checkpoint) is included
with the checkpoint request. So, before taking a checkpoint R must equal num, where
R isthe local counter of received messages since last committed checkpoint and num
is the one attached with the checkpoint request. Thusif the process p; polled that extra
message sent by the process p;, thiswill make Ry =num+1, and thus process p; will not
take a checkpoint when the checkpoint request arrives.
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2. Process p; sent a message before it takes checkpoint and this message was polled by
process pj; after it takes checkpoint. This means this message will be included in
checkpoint for p; but not in the checkpoint for p;,. But by going back to the algorithm
above, we find a contradiction since the coordinator send the commit request to the
participating processes which are included in min-group{} if and only if
Yo Si=Xl R, Otherwise, the coordinator will send discard message the participating
processes.

Note: the method used to prove the scenario 2 can aso be used to prove the scenario 1.

6. Conclusion:

In this paper we presented a new non-blocking minimum processes coordinated
checkpointing for hierarchical and distributed grid. The processes in our model
communicate indirectly through mailbox pool reside at the cluster master node. We use
that mailbox pool as messages logger since messages sent to each process stored in its
mailbox in strict FIFO order. Our proposed method reduces the storage access and
improves performance since the number of processes that take checkpoints each time is
minimized and since there is no need to save message data or any dependency
information to stable storage as long as our proposed scheme exploits the FIFO
mailboxes reside a master node as messages log storage. Also, the communication
overhead is minimized since the process suspends it computations only during taking a
tentative checkpoint, after that, the process can receive/ send a computation message
from/to another process. Also no explicit garbage collection algorithm is needed. Events
that occurred before the last consistent checkpoint will never be rolled backed, thus it
can be deleted from the mailboxes.
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