
Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

8th International Conference
on Electrical Engineering

ICEENG 2012

Fault-tolerant scalable hierarchical scheduling in grid computing

By

Gamal A. El-Sayed* Aref M. Abdullah**

Abstract:

Computational grids have the potential for solving large-scale scientific applications
using heterogeneous, distributed and possibly non-dedicated resources. Grid
environment is dynamic in nature, hence scalable and fault-tolerant scheduling is a
much needed to schedule parallel applications with inter-process communication. In this
paper, we propose a hierarchical and fault-tolerant scheduling approach, in which the
application’s processes communicate indirectly by sending messages over the network
through mailbox-based communication technique at a shared node. In grid, process
often migrates from one node to another, so this technique ensures the reliable delivery
of messages; prevents messages sent to the migrating process form losing. A non-
evolutionary mapping heuristic based on Max-Min approach is also proposed for
mapping such applications on grid resources. Finally, MPICH-V1 protocol is integrated
into our scheduling framework that exploits the mailbox-based technique instead of
channel memories. The simulation experimental results demonstrate that, the proposed
approach as a whole effectively schedules the grid applications in scalable and fault
tolerant way thereby ensures the application to be executed within its deadline making
the grid environment trust worthy.

Keywords:

Grid scheduling, fault-tolerance, MPICH-V1, rescheduling, checkpointing.

ـــ
* Electrical Engineering Department, Assiut University, Egypt

** Electrical Engineering Department, Assiut University, Egypt

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 2

1. Introduction:

Grid computing has emerged as a new paradigm for distributed computing, having
developed as a mechanism for allowing collections of connected computer systems to
form large-scale data and computing networks. It promotes the sharing of distributed
resources that may be heterogeneous in nature, so as to enable different application
domains including science, industry, engineering, finance and even government to solve
large-scale computing problems [1]. To achieve the promising potentials of
computational grids, an effective scheduling system is fundamentally important. A grid
becomes useful and meaningful when it both encompasses a large set of resources and
serves a sizable community. In grid, the abilities of the computing resources are
heterogonous and non-dedicated, and applications\jobs often arrive dynamically.
Because of these, scheduling methods of parallel computing may not be applicable in a
grid. Through good scheduling methods, the system can get better performance, as well
as applications can avoid unnecessary delays [2].
Scheduling on a grid has three main phases. Phase one is resource discovery, which
provides a list of available resources. Phase two is resource allocation, which involves
selection of feasible resources and mapping of applications to resources. The third phase
includes application execution, which includes file staging and cleanup. In second
phase, the selection of the best match of applications to resources is an NP - complete
problem [3]. Existing scheduling mechanisms can be classified into two categories: on-
line mode and batch mode. Using an on-line mode technique, the application is
scheduled to resources as soon as it arrives. In batch mode, however, arriving
applications are collected for examination at prescheduled times and these applications
are scheduled as a meta-task when a scheduling event is triggered.
 Parallel application scheduling is a kind of allocating problem consisting of allocating
machine resources to applications. The allocating can be based on either space sharing
or time sharing of computational resources. With space sharing, machines are
partitioned into groups, with each group assigned exclusively to one parallel application.
Most application schedulers are based on the space-sharing approach [4][5][6]. Under
such model, high performance schedulers act well. However, resource utilization and
execution efficiency cannot be guaranteed if applications and machines are not
homogeneous. For a practical grid platform with high heterogeneity, the space sharing
approach with a simple model is not an attractive choice [7].
With time sharing, each machine can run processes of multiple applications
concurrently. The basic benefits of time-shared execution are high system utilization
and short average application response time. However, developing high performance
scheduler in time sharing model is more difficult than in space sharing especially for
parallel applications with inter-process communication, but it can be achieved by
carefully planning and adapting resource allocation to applications [7].

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 3

 In this paper, we focus on online time sharing scheduling of compute-intensive parallel
applications with inter-process communication which their constituted processes may
send or receive messages at random point on non dedicated heterogeneous grid. The
objective of our scheduler is guaranteeing low execution time of application as well as
satisfying user-dependent requirements by introduce fault-tolerant scalable scheduling
framework.
 For supporting time-sharing-based parallel application scheduling, previous
researches mainly focused on co -scheduling mechanisms supporting time-shared
execution, such as gang scheduling and many loosely coordinated scheduling
mechanisms [8][9][10][11]. They are concerned with mechanisms to schedule processes
distributed across machines at the same time through coordination control. However
co -scheduling mechanisms do not tackle the problems caused by application diversity
and resource heterogeneity in a grid.
 Due to the existence of a large number of resources and users in grid environment,
issues such as autonomy and heterogeneity further complicate the allocation problem. In
such an environment, the feasibility, efficiency and scalability issues must be taken into
account, so it is not realistic that using a centralized scheduling scheme to deal with all
the resources available in grid environment [12]. Furthermore, the probability of a
failure is higher in the grid computing than in a traditional parallel computing and the
failure of resources affects application execution fatally. All of these push towards the
need for scalable and fault tolerant scheduling system [13]. Therefore, efficient
scheduling in scalable and fault tolerant manner for time-sharing execution is a much
needed functionality that is absent in today’s grid resource management infrastructure
especially for parallel applications with inter-processes communication which their
constituted processes may send or receive messages at random point.
 A large number of research efforts have already been devoted to fault tolerance. This
work can be divided into pro-active and post-active mechanisms. In pro-active
mechanisms, the failure consideration for the grid is made during allocation phase and
before the dispatching of the application to selected resources, so it is dispatched with
hopes that the application does not fail. Whereas, Post-active mechanisms handles the
application failures after it has occurred. Many works are primarily post-active in nature
and deal with failures through Grid monitoring.

In addition, time-sharing execution brings up another problem. Parallel application
scheduling in such high volatile and fault-prone environment is a dynamic procedure.
So, rescheduling the affected processes in case of failure is thus a desired functionality.
This is often implemented through checkpointing in combination with migration.
 In our work, we follow the best-effort policy in which local jobs have higher priority
than a grid task. Also, our proposed scheduling system will be scalable and fault tolerant
aims to guarantee the required QOS of the grid application. We use Post-active fault
tolerant mechanisms to recover and migrate the affected processes from the faulty node

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 4

to another new node. Some of the main contributions of the study include:

- New mailbox-based communication model is suggested which is suitable for highly
dynamic environment where processes frequently migrate from one node to another.

- We adopt a four-level scheduling approach which divides the big scheduling
problem into sub-problems.

- Due to using the mailbox-based communication model, we proposed non-
evolutionary communication-aware heuristic mapping based on Max-Min approach
for mapping parallel application with inter-process communication.

- MPICH-V1 protocol is slightly modified and integrated in our approach that
exploits the proposed mailboxes space as events logger, its fault tolerance
functionalities is used to checkpoint and to migrate the affected processes from the
failed node the another available resources.

- Finally, our proposed approach is compared with the work proposed by [14] .

 In this paper, we assume that the grid middleware layer supplies the appropriate
services for co-allocation [15] and resource management. Also, our suggested work
relies on some existing package services for application and resource monitoring.

This paper is organized as follows. Section 2 briefly reviews related work. In Section
3, we present our modeling framework, the proposed scheduling method, and also the
integration of MPICH-V1 into our scheduling system, and then in Section 4, we present
our simulation experiments and show the comparison results. Finally, the conclusion is
presented in section 5.

2. Related Work:

Due to the practical relevance of grid task allocation and task scheduling, several
approaches have been investigated; some of them are very effective for specific classes
of problems and the other work well only homogenous platforms, as for instant [16]
[2][17][18] deal with independent task workloads, loosely dependent task mapping [19],
single site mapping [20][6][21], or multisite mapping [4][22][23][24]. Furthermore,
evolutionary algorithms have been explored [14][6] to find a near-optimal solution.
However, these approaches are limited to small size instances due to the time-
consuming nature of them, and they are not the most suitable for online mapping and
remapping in large scale grid.
In recent years, the researchers have proposed several scheduling methods that are
using in computing to allocate grid resources for parallel applications. The majority of
these studies were based on centralized scheme [25][26][2][27][28][29][18] while there
is little works based on decentralized [30] and hierarchical schemes [31][32][21]
[5][33].

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 5

Some efforts on application-level scheduling focused on applications represented by
DAG graphs [34], by task interaction graphs [35][14]. Building task graphs expressing
precedence constraints for complex parallel applications is non-trivial and hence cannot
be adopted for a large number of parallel applications. Some efforts use performance
models that predict execution times for parallel applications [36][27][20][37][14] .These
performance models are often used by optimization algorithms that search the space of
candidate schedules and choose the schedule with the minimum predicted execution
time[20] [14].
 Application Level Scheduling (AppLeS) was proposed in [38][36] for adaptive
application scheduling on heterogeneous computing platforms. The AppLeS approach
exploits static and dynamic resource information, performance predictions, application-
specific and user-specific information, and scheduling techniques to adapt application
execution. The scheduling algorithms in AppLeS rely on short-term prediction provided
by the Network Weather Service. AppLeS uses a performance to determine a set of
candidate schedules for the target application and then chooses the best schedule that
matches performance criteria or gives minimum makespan is selected. Currently
available templates are APST for parameter sweep application (APST), AMWAT for
master/worker applications and SA for scheduling moldable applications on space-
shared parallel computers. However, AppLeS doesn’t address the scalability and fault
tolerance issues. Also, there is potential for schedule conflict that may arise between
different schedules when simultaneous requests submitted to different AppLeS agents.
 A project presented by [35] is targeted for online scheduling for parallel applications
follows a single program multiple data (SPMD) style of program execution. It used the
interacting graph formulation method to formulate the scheduling problem. In this type
of graph, the nodes represent processes and the edges represent intensity of interaction
between those processes. Its grid consists of several zones; each zone has a scheduler
called the zone scheduler. This scheduler is responsible for making the scheduling
decision for all resources in that zone, which it is responsible for clustering the
application processes to identify subsets (or “clusters”) of processes that communicate a
lot among themselves.. Thus, the tasks of an application are split into clusters, with
processes in each cluster interacting heavily and relatively infrequently with processes
in other clusters. After clustering the application’s processes, the zone scheduler that
receives the application sends out requests to its schedulers of other zones to schedule
one or more clusters .Each zone is responsible for making its own scheduling decision.
Like AppLeS, there is potential for schedule conflict that may arise between different
schedules when simultaneous requests submitted to different zone scheduler, that
because their scheduling approach suffers from a crucial problem which is lack of a
global vision and coordination between the schedulers of the different zones.
 In [14], an adaptive multisite mapping for computationally intensive grid applications
based on multi-objective differential evolution was proposed by Ivanoe et al. to

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 6

automatically provide a set of possible mapping solutions for applications that
constituted of communicating tasks in non-dedicated and heterogeneous grid. It gave
different balance for resources use and QoS constraints, investigated only in terms of
the degree of reliability of the grid nodes and of the internet links of the sites they
belong to. It is consider fault tolerance in pro-active manner during mapping and
exclude those resources that have tendency to failure. But using the post-active fault
tolerance mechanism sometimes outperform using pro-active one because runtime
rescheduling is a desired functionality due to dynamic and fault prone nature of grid,
however their effectiveness largely depends on tuning runtime parameters such as the
checkpointing interval and which processes should take checkpoint so as to limit its
overhead. Also [14] doesn’t consider the growth in size of grid since it followed a
centralized scheme approach.

3. Scheduling framework:

3.1 Proposed architecture:

In our grid model, the resources are connected via 4-level hierarchical network. The
proposed grid consists of several zones each with many sites. The site in a zone consists
of several heterogeneous workstations in time sharing mode which that can be grouped
according to their physical locations. For simplicity, we assume that each workstation
with single processer. The workstations in each site are connected by LAN network and
managed by a node called a site master node. All sites in a zone may be connected by
LAN, WAN or by internet and managed by a node called a zone master node. The
different zones are also linked through the internet and managed by a node called a
super grid master node. For this paper, we assume that all master nodes are dedicated
nodes with high outgoing/ingoing bandwidth; also we assume that these master nodes
don’t fail.
At the top of our hierarchical model tree, there is a Super Grid Scheduler (SGS) in the

super grid master node to which the users submit their applications, in level 2 there are
zone schedulers (ZSl) in zone master node, sites schedulers (SSi) in level 1, and at the
level 0 home schedulers run on each computing resource (the individual processor) in
time sharing mode.
 In our model, Processes of a particular application on different processors only
communicate indirectly by sending messages over the network through mailboxes
which are dynamically created in mailbox pool which resides at a site, zone or super
grid master nodes before dispatching the application to the selected resources as
illustrated below in subsection 3.2.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 7

Figure (1): The hierarchical scheduling architecture

3.2 Our mailbox-based communication scheme:

 In our mailbox-based communication scheme, each process of the parallel application
is assigned a mailbox queue by the scheduler at the master node which all selected
resources for application are directly located under its control before dispatching it to
the selected resource to buffers the messages sent to it, i.e. the mailboxes queues for all
processes of the application are located in mailbox pool which residing at the master
node which is different from the nodes where those processes will be executed. For
example, if the selected resources for all processes of an application are located in a
single site, a mailbox for each process is created in the site master node of that site
before it is dispatched by the site scheduler to the selected resource.

Inter-process communication between processes can occur as follow:
• Transmission of a message from the sender to the receiver’s mailbox: If a process

wants to send a message to a process , it sends it to ’s mailbox at the master
node.
• Delivery of the message from the mailbox to its owner process: The receiving process
can use a push or pull operation to obtain the message from the mailbox as follows:
Push (PS): The mailbox controller keeps its owner process’s address and forwards every
message to it. Although message queries incur no costs, the scheduler must notify the
mailbox of the current location of its owner process after scheduling or rescheduling
process. PS mode is needed if real-time message delivery is required.
Pull (PL): The process retrieves messages from its mailbox queue (in order) whenever
needed. The mailbox doesn’t need to know the process’s current location, thus avoiding
location registration, but the process must query its mailbox for messages. Although

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 8

polling messages would increase message delivery overhead, it ensures reliable message
delivery and very useful technique in migration.

In this paper, we will adopt a pull operation method. When a process wants to retrieve
a message from its mailbox, it uses a primitive like get (Addr, mailbox [y]) to pull
the one at the location index y of its mailbox queue, where Addr refers to the full
address of the mailbox.
 Figure 2 show s a part of an application’s execution consists of three processes and
the corresponding mailboxes’ view

(a) (b)

Figure (2): (a) A part of an application’s execution (b) Mailboxes pool view.

In highly volatile and non-dedicated grid environment in which the nodes can leave or
crash at any time, the application often require to migrate from one node to another.
Therefore, in our mailbox-based scheme the messages sent to the faulty process during
its migration will not be lost and they don’t need to be routed or retransmit. They will be
kept in its mailbox and the process will pull them after restarting on the new resource.

Table 1 shows the definition of notations used in this paper.

Table (1): Definition of notation

Notation Meaning
avail The total no. of available computing resources in entire grid at time of

scheduling the job (application).
sat The resources set in entire grid that satisfies the minimum requirement

of a job.
all The total no. of available computing resources in zone at time .
sat The resources set in a zone that satisfies the minimum requirement of

job.
sat The resources set in site that satisfies the minimum requirement of a

job
sat The resource set that satisfies the minimum requirements of job in

m 1
p 1

p 2

p 3
m 3m 2

m 4
Mailbox of P1 m4 m1

Mailbox of P2

Mailbox of P3 m3 m2

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 9

general speaking (in a zone, a site or in the whole grid accordingly.
speed The CPU speed of computing resource in MIPS.
%(t) The predicted percentage of available CPU for the resource at time t
size The no. of instructions of process measured in MI (mega instructions)
cmm The summation size of all messages expected to be sent or received by

process measured in bytes and extracted from previous run.
Site master node.
Zone master node.
Super grid master node.

SM(t) The predicted available bandwidth between resource and the manager
node of site at time t.

ZM(t) The predicted available bandwidth between resource and the manager
node of zone at time t.

SGM(t) The predicted available bandwidth between resource and the super grid
manager node of the system at time t.

MN The predicted available bandwidth between resource and a manager
node in general speaking at time t.
The estimated computation time of on processor based on future
resource state predicted by NWS.
The total time required by process to finish its work on resource
The total time which will be spent by executing on resource to
transmit all its messages from its mailbox in case of receive events or to
mailboxes of other processes in case of send events.
The estimated transmission time of the process from the scheduler to
the resource .

3.3 Performance Model:

 The mode of MPI communication in our approach is assumed to be either
asynchronous send or blocking receive. So instead of spin-block [11], we assume that
block-immediately mechanism is adopted for the process blocking on receiving
messages if the communication daemon of the process checked its mailbox and found
that the wanted message had not arrived yet. The process voluntarily relinquishes the
processor so that next competing process can be scheduled, and when the required
message arrives, it re-acquires the processor for time proportional to the portion of its
time slice it relinquishes to the other process.
 In this work, we assume to know, for each process , the number of instructions

size and the total amount of communications cmm a process may exchange with all

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 10

other processes. Also, information on the status of available resources is also very
important for a grid scheduling to make a proper schedule, especially when the
heterogeneous and dynamic nature of the grid is taken into account. The role of the grid
information service (GIS) is to provide such information to grid schedulers. For
example, in the Globus Toolkit [39], which is a standard grid middleware, most
schedulers fetch predicted resource parameters from GIS which is responsible for
collecting and predicting resource state information, such as CPU capacities, memory
sizes, network bandwidth and load of a site in a particular period. The Globus
Monitoring and Discovery System (MDS), which is normally maintained as a
hierarchical structure, and Network Weather Service (NWS) [40] are examples of GIS.
Thus it is clear that there exist different software components to retrieve run-time
resource information. Here, this information is supposed to be acquired either through
statistical estimations in a particular time span or gathered by tracking periodically and
forecasting dynamically resource conditions [40, 42].
 Due to the hierarchical organization and the communication scheme in our approach
in which the application’s processes communicate through mailboxes reside in a shared
node (a master node), there is no need for measuring the bandwidths between
computing recourses and reporting them to MDS. We need only to measure the
bandwidth between each computing resource and its parent and grandpa master nodes.
This will minimize the overhead of sending dynamic information of bandwidth to MDS.

 Considering the nature of our communication scheme in which the scheduler creates
a mailbox for each process of the application before dispatching it to the selected
resource, the communication time required by a process for pulling the messages from
its mailbox and for sending messages to the mailboxes of other processes must be
considered when predicting the expected completion time of the process. Thus the
expected completion time of the process on processer is naturally modeled as the
sum of estimated computation time, estimated communication time and estimated
transfer time:

= + + (1)

Where:
- is the estimated computation time of on processor with its future state

predicted by NWS, which is calculated as = .

- is the estimated total time which will be spent by executing on resource
to transmit its all messages from or to mailbox pool which resides at a master node

MN (SMN,GMN, or SGMN). is determined as :

 = .

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 11

-The estimated transmission time of the process from the scheduler to the resource
can be determined as:

= .

 Using the above performance model to predict the estimated completion time of each
process including the computation time, communication time, and transfer time the
scheduler can choose the best set of resources to optimize the application QoS based on
the information provided by performance modeling. Whereas the total completion time
of the application is decided by the process has the maximum completion time.

3.4 scheduling policy:

While workflow and less communicating parallel applications achieve good
performance when executed across multiple sites, compute-intensive parallel
applications which involve significant inter-task communication exhibit poor
performance due to low-speed network links between the sites. So, the communication
cost is a significant factor to be considered during resource allocation for such parallel
applications to achieve better performance in large-scale grid.
Here, we will first try to find the best resource set (schedule) to execute the application
inside a single zone. But if there is no a single zone with insufficient resources which
satisfy the user-dependent requirement, our scheduling system will then try to find
resources from multiple zones as follow:

1- When an application scheduling request is submitted by a user to the super grid
scheduler (SGS), the SGS quires the grid information system to check the available
resources, and then redirects the request to each of the zones schedulers in lower
level which has enough resources to execute the application under its control. Then
SGS will wait for each of the zone schedulers to which it has redirected the
scheduling request to calculate the different possible schedules and then return its
best schedule to it. When the SGS receives the offered schedule of each zone
scheduler, it compares them and chooses the best one to execute the application (the
best one is the schedule with minimum completion time).

Once a zone scheduler ZSl receives a scheduling request from SGS scheduler, it first gets
a set of possible resources which the meet the minimum requirement for the application
and if the candidate resources are enough to execute the application, then the best
schedule inside that zone will be found as shown in the following. If not, the zone
scheduler ZSl returns the NULL schedule to the super grid scheduler SGS:

a. Once a zone scheduler ZSl receives the scheduling request, it must first check
whether there is any single site under its control with enough candidate resources
as requested by application. If so, the ZSl scheduler will get the dynamic

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 12

information of these candidate resources and the available bandwidth between
them and that site master node SMN, and then calculates the best solution that can
be offered by this site by applying the mapping algorithm we present in the next
subsection. After the ZSl has calculated the best schedule of each of the candidate
sites, it compares them chooses the best one (the schedule of the site that gives
minimum completion time).

b. The zone scheduler ZSl also calculates the best schedule of all available resources
under its control (combining resources from multiple sites) by getting the dynamic
information of these candidate resources and the available bandwidth between
them and the zone master node ZMN and then applying the proposed mapping
algorithm.

c. Finally, the zone scheduler ZSl compares between the best solution of the best site
and the best solution of the whole zone and returns the best one back to the SGS
scheduler.

2- If there is no zone scheduler with enough resources to execute the application, then
the super grid scheduler (SGS) calculates the best schedule among all available
resources under its control (by selecting best resources across sites under the control
of different zone schedulers) by getting the dynamic information of the set of
possible resources which meets the minimum requirement for the application the
dynamic information of these candidate resources and the available bandwidth
between them and the super grid master node SGMN and then applying the proposed
mapping algorithm. Finally, After the SGS scheduler chooses the final schedule
either inside single site, single zone, or multi zone, the actual application is
dispatched to the selected resources as follow:

i. If all the selected resources for the application are located in a single site, the
application itself is submitted to the site scheduler which is responsible for creating
a mailbox for each of the application’s processes in the mailbox pool at the site
master node SMN and then dispatches each process to its selected resource. In this
case, the site scheduler is also responsible for monitoring and rescheduling the
application in the presence of resource\link failure.

ii. If all the selected resources are located in more than one site under the control of a
single zone scheduler, then the application itself is submitted to that zone scheduler
which, in this situation, will be responsible for creating a mailbox for each of the
application’s processes in the zone manager node ZMN and then dispatches each
process to its selected resource. In this case, the zone scheduler is also responsible
for monitoring and rescheduling the application in the presence of resource\link
failure.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 13

iii. If all the selected resources are not located under the control of a single grid
scheduler, then the application itself is submitted to that SGS scheduler which, in
this situation, will be responsible for creating a mailbox for each of the
application’s processes in the mailbox pool in the supper grid master node SGMN,
and then dispatches each process to its selected resource. In this case, the SGS
scheduler is also responsible for monitoring and rescheduling the application in the
presence of resource\link failure.

3.5 The proposed Mapping Algorithm:

Due to using the proposed mailbox-based communication model, it can be now easy to
modify and use one of those simple mapping heuristics which normally used in mapping
independent meta-task for mapping inter-process parallel application which their
constituted processes may send or receive messages at random point on non-dedicated
and heterogonous grid.
 Indeed, using a pull operation by processes to get their messages from their
mailboxes, at a shared node, slightly increases the execution time of application. But for
the non-dedicated and fault-prone environment like grid, where processes often migrate
from one node to another, this technique ensures the reliable delivery of messages and
prevents messages sent to the migrating progress form losing and retransmitting. Also
the fixed-location mailbox used by our approach eliminates the need for message
routing mechanism, and thus improves the performance.
Here, we will slightly modify the Max-Min heuristic by considering the

communication cost a process needs to pull messages from its mailbox and to send
messages to the mailboxes of other processes.
As explained in subsection 3.4, our mapping algorithm is invoked by super grid
Scheduler (SGS) or a zone scheduler ZSl after resource discovery phase. After getting a
set of possible resources sat in which the user, who submitted the application, has an
account and they meet the minimum requirement of the application (within a site, a zone
or multi zone) which are obtained during resource discovery phase, the scheduler gets
the predicted dynamic information of those computing resources and the predicted
available bandwidths between them and the master node GMN from NWS and then
invokes the algorithm mapping. The algorithm mapping uses the resources and
application information as input and acts as follow:
Note: Let sat used to refer to the resource set (in general speaking) which satisfies the
minimum requirement of application either in a zone sat, or in a site sat or in the
whole grid sat accordingly.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 14

First, the mapper uses the performance model explained in subsection 3.3 (formula 1) to
predict the expected completion time for each pi of the application on each
resource j sat. Remember that the communication time is the time required
by executing on resource to transmit its all messages from its mailbox in case of
receive events or to mailboxes of other processes in case of send events.
 After computing the expected completion time of each process over all the computing
resources, the Max-min approach will be used to map the processes of the application. It
chooses the process having maximum of earliest completion times and mapping it to the
corresponding machine. Then, the mapped process is marked and the selected recourse
is removed from the candidate resource set sat. Then the procedure is repeated until
all the processes are mapped. The figure 3 shows the pseudo codes of mapping
algorithm.

Figure (3):The pseudo code of mapping algorithm

1- let sat = a set of n possible resources in which the user submitted the job has as
 account in and meet the minimum requirement for the job
2: let Jb = a job with N processes { , ,……. }

3: let = expected completion time of on computing resource j.

4: for all in the job DO

5: for all j sat Do

6: calculate

7: end for
8: end for
9: determine the minimum completion time of each Jb;

10: map the which has the maximum of the minimum completion time to
 corresponding resource j;
11: remove the and j to avoid choosing it for other processes of the job Jb
12: determine the next maximum of minimum completion time among all the
 remaining
 processes after excluding the selected resources for mapped processes;
13: repeat steps 10-12 until all Jb are mapped
14: Bestsched = mapping result
15: return Bestsched to caller
End

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 15

3.6 Fault tolerance and MPICH-V1:

Due to the high rate of failures and the dynamic nature of the grids, the integration of
fault tolerance with scheduling is very important. Also, the larger size and the high
volatile nature of grid make failures accurse often during the application execution in an
unpredictable way, thus the performance achieving integrating the post-active fault
tolerance into the scheduling system through checkpointing and migration mechanism
often outperforms using pro-active one.
Two main techniques are used for saving the distributed execution state and recovering
from systems failures: coordinated checkpoint and uncoordinated checkpoint associated
with message logging. In all cases, the process states are saved in reliable media.
In coordinated checkpoint processes coordinate their checkpoints in order to save a

system-wide consistent state. It involves the rollback of all processes from the last
checkpoint when a faulty situation is detected, even when a single process crashes.
Uncoordinated checkpoint protocols allow all processes to execute a checkpoint
independently of the others. Thus this technique relies on message logging in addition to
process checkpointing to ensure the complete description of a process execution state in
case of its failure. Message logging protocols consist in 1) logging all received
messages and 2) re-sending the same relevant messages, in the same order, to the
crashed processes during their re-execution. This principle provides the guaranty that a
re-executed process starting from a previous correct state (the beginning of the
execution or a consistent checkpoint image) will reach a state matching the rest of the
system, as before the crash. There are three kinds of message logging protocols that can
be combined with uncoordinated checkpoint [41][42]:

• Optimistic log (in which we can include the sender- based techniques) assumes that
messages are logged, but that part of the log can be lost when a fault occurs. Either
this technique uses a global coherent checkpoint to rollback the entire application
when too much information has been lost, or they assume a small number of faults
(mostly one) at one time in the system;

• Causal log is an optimistic log, checking and building an event dependence graph
to ensure that potential incoherence in the checkpoint will not appear;

• Pessimistic log a transaction logging ensuring that no incoherent state can be
reached starting from a local checkpoint of processes, even with an unbounded
number of faults.

 There have been many MPI implementations, which provide fault-tolerance to the
applications. Different implementations differ in the way they store the state of
execution and restore it back, the level in the software stack at which they are
implemented and the level of the transparency to the user. Some such implementations

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 16

are MPICH-V1, MPICH-V2, FT-MPI, CoCheck, StarFish and Clip. These
implementations have normally concentrated on how to tackle node disconnections,
which may be due to node crash or network link failure. Fault tolerance mechanisms
used by the above implementations are checkpointing, message logging, and the
replication of processes [43]. In this paper we have slightly modified and integrated the
MPICH-V1 with our scheduling approach. MPICH-V1[44] is the first protocol of
MPICH-V designed to tolerate a high node volatility. It is based on uncoordinated
checkpointing and pessimistic message logging protocol storing all communications of
the system on reliable media. MPICH-V1 runtime consists of several entities: Channel
memories, Dispatcher, Checkpoint servers, and computing nodes. To ensure this
property, every computing process is associated with a reliable process called Channel
Memory. Every communication sent to a process is stored and ordered on its associated
Channel Memory. To receive a message, a process sends a request to its associated
Channel Memory. After a crash, a re-executing process retrieves all lost receptions in
the correct order by requesting them to its Channel Memory. A main property of
MPICH- V1 is the uncoordinated restart: a process re-execution is independent of the
other processes of the system [45].

There can be one or more checkpoint servers depending on the size of the MPI
application. The checkpoint server collects the checkpoint images from the
communication daemons at computing resources and provides them with the checkpoint
image on restart. The dispatcher in MPICH-V1 manages tasks that are instances of
traditional MPI processes. During the initialization, the dispatcher launches a set of
tasks on participating nodes, each task instantiating a MPI process. A key task of the
dispatcher is the coordination of the resources needed to execute a parallel
application\job. This includes providing nodes for executing services (Channel
Memories and Checkpoint Servers) and MPI processes. The dispatcher also monitors
the participating nodes and detects a potential failure: either a node or a network failure.
It then launches another task (a new instance of the same MPI process). The task restarts
the execution, reaches the point of failure and continues the execution from this point.

2.7 Integration MPICH-V1 with our scheduling approach

The distributed nature of MPICH-V1 makes it easy to integrate it with our hierarchical
scheduling framework. For integration our scheduler with MPICH-V1, we have used the
MPICH-V1 dispatcher component as a dispatcher of our scheduler and also used the
mailboxes pool instead of channel memories. Like CM in MPICH-V1, the mailbox
script is a multi-threaded application that handles a set of TCP connections using a pool
of threads In MPICH-V1, each MPI application is associated with a dispatcher process.
Thus the dispatcher in MPICH-V1 architecture associated with an application, can also
serve as the dispatcher in the our scheduler framework and it resides in the same master

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 17

node of the location which all selected resources to execute the processes of the
application are directly located under its control. Thus, the MPICH-V1 dispatcher is
modified for this purpose. Also, the mailboxes in our approach can serve as CMs in the
MPICH-V1.
For a given application, MPICH-V1 dispatcher resides on the same master node along
with our scheduler (in a site, zone, or super grid scheduler) and they communicate
through a FIFO pipe. Our scheduler writes its migration commands into a FIFO pipe.
The migration command consists of the rank of the process to be moved, the ip address
of the destination node. The dispatcher checks for any data to read from the pipe.
 The scheduler that all the selected resources are directly located under its control
queries the information system periodically to get the updated information for those
resources. If a failure is detected, the scheduler reschedules only the affected processes
and re-executes them on the new resource from its last saved checkpoint and then the
process retrieves the lost messages from its associated mailbox.

4. Experimentation and results:

To the best of our knowledge, a generally accepted set of benchmarks relative to fault
tolerant scheduling of parallel applications with inter-process on heterogonous grid does
not exist. However, some researchers have used population-based optimization
algorithms to solve mapping problems. In small size grid, they indeed exhibits
remarkable performance in optimizing in terms of final accuracy and robustness,
however, due to the time- consuming nature of them, they are not the most suitable for
online mapping in large-scale grid. Here, we will compare our approach in some cases
with the work proposed by [14] since it is the closest study to our approach. In this
work, an adaptive multisite mapping for computationally intensive grid applications
based on multi-objective differential evolution algorithm.
In this work, any mapping solution can be represented by a vector µ of N integers

ranging in the interval [1,R], where R the total number of resources in grid and N is the
number of processes in the application. Furthermore, there are two fitness functions, one
accounting for the time of use of resources and the other for their reliability. Denoting
with and respectively the computation and the communication times
requested to execute the process on the node it is assigned to, the total time needed to
execute on is: = + , This is evaluated on the basis of
available computation power and available bandwidth in the node j, which is the time
spent by node j in executing computation and communication of the process i assigned
to it by the proposed solution. So, the first fitness function is Φ1(µ) =
 So, the goal of the proposed evolutionary algorithm is to search for the smallest fitness
value among these maxima optimizing, in terms of time, the grid resource use. For

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 18

reliability, the second fitness function is given by the reliability of the proposed
schedule (mapping). It is evaluated as: Φ2 (µ) = j · λj , Where j is the reliability of
the computing resource onto which the th process is mapped and λj is the reliability of
link of site this node belong to. In our simulation, we have calculated the reliability of a
given resource as a function of its probability of failure.
 Finally, it should be pointed out that the first fitness function should be minimized,
while the second should be maximized.
 For comparison, we will keep the same parameters values for the proposed multi-
objective differential evolution algorithm used by the authors, except for number of
generation g which we should adjust so as to make the comparison with our approach in
some possible cases. For brevity, we will refer to this work in the rest of the paper as
multi-objective DE approach.

4.1 Simulation setup:

We have developed a simulator in C++ to evaluate the performance of the proposed
scheduling algorithm. In the simulation, our grid consists of ten sites denoted by s1,s2,

,…,si….s10, each with Ri computing resources with heterogeneous raw CPU power
(ranging from 600 to 1100 MIPS) connected by switched LAN, which in turn , are
grouped into six zones denoted by z1,z2, ,…,zl….z10 as follow:
Sites s1, s2 are located in zone z1, sites s3, s4, s5 in z2, site s6 in zone z3, site s7 in zone z4,
and sites s8, s9, s10 in zone z5. The intra-site maximum bandwidths of the sites s1 and s4

are 200 Mbps, where all of the other sites has intra-site maximum bandwidth of 100
Mbps. The intra-zone maximum bandwidths of the five zones, starting from zone z1, are
30, 20,20,20,30 respectively, while the inter-zone maximum bandwidth between all
zone is 3Mbps.
 We simulate the Globus Meta Directory Service as a means to get grid resource loads
and availability periodically at a predefined interval time. So, we generate these values
with randomly percentage which, for each resource, keep constant for some interval
before changing. The load percentage of the CPU of a resource (or the network link)
indicates the availability degree of that resource and it ranges from 0 to 1.0 where a
value of 1.0 indicates an unloaded resource and a value of 0 indicates the presence of a
failure. Thus, the load percentage of 0.75 for a processor in our simulation setup
represents one-fourth loaded of its raw CPU speed (in MIPS). This case is also the same
for the availability of the links between resources.
 Different simulations were carried out on two synthetic compute-intensive parallel
applications with inter-process communication which are consists of 12 processes and
24 processes respectively, and denoted by , .

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 19

4.2 Comparison of mapping effectiveness and scalability of the two approaches

The first simulation was carried out on the two applications (,) to compare the
mapping effectiveness and scalability of our hierarchical approach and the multi-
objective DE approach for different grid size without considering the fault tolerance
issue (we assume that the reliability of all resource is 100%), and then compute the
performance metrics which are the total prediction completion time and the
corresponding time of scheduling to get this schedule. For different approaches, the test
for each size is made ten times for different CPU loads and the average has been taken
for the comparison.
 For each test in case of the multi-objective DE approach, we have continued
increasing the number of generation g till the algorithm reach saturation and couldn’t
get any improvement in mapping solution (i.e. decreasing in the predicted total
completion time).
 The figures 4, 6 show the effect of increasing of number of resources on the predicted
total completion time for the two applications respectively in the two approaches, where
the figures 5,7 show the scheduling time needed to get corresponding mapping solution
for each. The Y-axis’s in the figures 4, 6 represent the predicted total completion time
and the scheduling time to get the corresponding schedules respectively, while the x-
axis’s represent the number of resources in grid. (for the sake of justice comparison, we
use the same number of resources in each site for every test i.e. 100 means, 10
computing resources in each site and 200 means, 20 computing resource in each site,
and so on). While the Y-axis’s in the figures 5, 7 represent the scheduling time needed
by the scheduling algorithm to get the corresponding mapping solutions (schedules).

It is quite clear that the effect of increasing the number of computing resources (i.e.
increasing the search space) on the predicted total completion time and also on the
scheduling time of the both approaches, but it is observed from the figures that the
differential evolution gives better schedules and reasonable scheduling time when the
number of resources is small and becomes less effective as the number of resources
increases although the multi-objective DE approach has global view since it is based
centralized scheme. In despite of its hierarchical nature, our approach gives better
schedule as the number of resources increases and also gives less scheduling time for all
cases. Although there is a lack of global view in our scheduling approach, it gives better
schedule because this class of applications with inter-process communication often has a
tendency to execute within single site or zone to avoid the inter-site low bandwidth.
Also, the improvement in scheduling time in our approach comes from the hierarchical
scheme followed.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 20

100 150 200 250 300 350 400 450 500 550 600
700

750

800

850

900

950

No. of Resources in Grid

P
re

di
ct

ed
 t

ot
al

co

m
pl

et
io

n
tim

e
fo

r
 (

in
 s

ec
on

ds
)

for multi-objective DE approach

for our approach

Figure (4): The effect of increasing the number of resources on actual total completion.
time for application A (12-process).

100 150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

70

No. of Resources in Grid

S
c

h
e

d
u

lin
g

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

for multi-objective DE approach

for our approach

Figure (5): The effect of increasing the number of resources on Scheduling time for
application A (12-process)

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 21

100 150 200 250 300 350 400 450 500 550 600
400

420

440

460

480

500

520

540

560

580

No of Resources in grid

P
re

d
ic

te
d

 t
o

ta
l

 c
o

m
p

le
ti

o
n

ti

m
e

(i

n
 s

e
c

o
n

d
s

) for multi-objective DE approach

for our approach

Figure (6): The effect of increasing the number of resources on actual total completion
time for application B (24-process)

4.3 Comparison the two approach with considering the fault tolerance:

This experiment was to show that the post-active fault tolerance technique we have
integrated in our approach by using MPICH-V1 to process checkpointing and migration
only the affected process from failed node to another yields more benefit for long
running applications compared to the pro-active technique used by the multi-objective
DE approach in highly fault-prone and volatile environment even if the failures
occurrence can be predictable. The experiment was carried out on the two applications

 , ; but in this paper, we have reported the results only of the application .
In this experiment, we simulate grid of fixed size -300 computing resources as 30
resources in each site (we took this size because the two approaches gave almost the
same predicted total completion time in the first experiment). Also, we have generated
random errors with different probabilities to simulate computing resource failures in the

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 22

100 150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

70

No of Resources in grid

S
ch

ed
ul

in
g

tim
e

(in
 s

ec
on

ds
)

for multi-objective DE approach

for our approadh

Figure (7): The effect of increasing the number of resources on Scheduling time for
application B (24-process)

trace file of Meta Directory Service and compute the reliability of resource accordingly,
and then we have compared the actual total completion time for the two approaches.
For the sake of simplicity, for each test we have generated the same failure probability
for all computing resources with even IDs, while all resources with odd IDs have the
same different failure probability.

For our approach, each test was carried for three different simulated checkpoint
overhead of 10, 15, 20 seconds/checkpoint, while the checkpoint interval have fixed at
130s period in all simulations, while for multi-objective DE approach , we have used the
same values of the parameters needed by the multi-objective differential evolution
mapping algorithm as suggested by the authors.
For each failure probability case, each test is made ten times for different CPU loads
and the average has been taken for the comparison. Figure 8 shows the effect of
increasing the failure probabilities of resources on the actual completion time for
application (12 processes), in which Y-axis represents the actual total completion
time, while the x-axis represents resources failure probabilities.
 The figure 8 shows that our approaches gives better performance for almost cases
compared to the multi-objective DE approach except for few cases when failure
probability is small due to the checkpoint overhead.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 23

0 0 .0 0 9 0 .1 0 .0 2 0 .0 1 0 . 0 3 0 .0 3

0 0 . 0 0 2 0 0 0 . 0 2 0 . 0 8 0 .0 2 0 .0 6

E v e n r e s o u r c e s :

O d d r e s o u r c e s :

P e r c e n t a g e o f f a i l u r e p r o b a b i l i t y (%)

Figure (8): The effect of failure probability on actual total completion time for
 application A (12-process).

5. Conclusion

In this paper, a new fault-tolerant and scalable scheduling scheme for parallel
applications with heterogeneous inter-process communication on high dynamic and
heterogeneous grid is presented. Applications’ processes indirectly communicate
through new proposed mailbox-based communication model at a shared node. The
proposed mail-box model is exploited by our scheduling to simplify the mapping
process of application’s processes to the best resource in salable manner. MPICH-V1 is
slightly modified and integrated into our scheduling system which also exploits the
mail-box pool as Channel Memory (CM). The performance of the proposed strategy is
evaluated using a simulator developed in C++. The experimental result demonstrate that
the proposed scheduling effectively schedule parallel applications with inter-process
communication in fault tolerant and scalable way in spite of highly dynamic nature and
largely size of grid.
It is also observed that, for highly volatile grid, the performance of the systems that
integrate post-active fault tolerance mechanism into scheduling often outperform the
performance of systems that use pro-active fault tolerance mechanism because of the
frequently and unpredictable failures occurrence. The future work will focus on
improving our scheduling hierarchical tree by relieving the assumption stating that the
master nodes are dedicated nodes and don’t fail by making the tree dynamically re-
configurable and fault tolerant.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 24

References:

[1]

[2]

[3]

[4]

[5]

[6]

 [7]

 [8]

[9]

[10]

[11]

[12]

[13]

M.A. Al-fawair, “A Framework for Evolving Grid Computing Systems,” Ph.D.
dissertation, Faculty of Technology. De Montfort University, United Kingdom,”
2009.
M. Nandagopal, “FAULT TOLERANT SCHEDULING STRATEGY FOR
COMPUTATIONAL GRID ENVIRONMENT,” International Journal of
Engineering Science, vol. 2, 2010, pp. 4361-4372.
S. Nasir, M. Shah, A. Kamil, B. Mahmood, and A. Oxley, “Hybrid Resource
Allocation Method for Grid Computing,” Second International Conference on
Computer Research and Development, 2010, pp. 0-5.
H. H.Mohamed, “The Design and Implementation of the KOALA Grid Resource
Management System,” 2007.
A.Tchernykh, U. Schwiegelshohn, R. Yahyapour, and N. Kuzjurin, “On-line
hierarchical job scheduling on grids with admissible allocation,” Journal of
Scheduling, vol. 13, Mar. 2010, pp. 545-552.
S. a Jarvis, D.P. Spooner, and G.R. Nudd, “Dynamic Scheduling of Parallel Jobs
with QoS Demands in Multiclusters and Grids,” Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing (GRID’04), 2004, pp.
402-409.
L. CHEN, “Process migration and runtime scheduling for parallel tasks in com-
putational grids.” Ph.D. dissertation.University of Hong Kong,” 2007.
G.S. Choi, J.-ha Kim, D. Ersoz, and C.R. Das, “Coscheduling in Clusters : Is It a
 Viable Alternative ?,” Supercomputing, 2004. Proceedings of the ACM/IEEE
SC2004 Conference, 2004, p. 16.
P.G. Sobalvarro, S. Pakin, W.E. Weihl, and A.A. Chien, “Dynamic Coscheduling
on Workstation Clusters,” Systems Research, 1998, p. 231--256.
E. Frachtenberg, D.G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive Parallel
Job Scheduling with Flexible CoScheduling,” Transactions on Parallel and Dis-
 tributed Systems, IEEE, 2005, pp. 1066 - 1077.
S. Nagar, A. Banerjee, A. Sivasubramaniam, and C.R. Das, “A closer look at
coscheduling approaches for a network of workstations,” Proceedings of the
eleventh annual ACM symposium on Parallel algorithms and architectures –
’99, New York, USA: ACM Press, 1999, pp. 96-105.

Z.L. Qian Zhang, “Design of Grid Resource Management System Based on
 Information Service,” JOURNAL OF COMPUTERS, vol. 5, 2010,pp. 687-694.
Y. Zhang, A. Mandal, C. Koelbel, K. Cooper, and C. Hill,“Combined Fault Tole-
 ance and Scheduling Techniques for Workflow Applications on Computational
Grids,” 9th IEEE/ACM International Symposium on Cluster Computing and the
 Grid, 2009, pp. 244-251.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 25

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

I. De Falco, U. Scafuri, and E. Tarantino, “An adaptive multisite mapping for
 computationally intensive grid applications,” Future Generation Computer Sys-
tems, vol. 26, Jun. 2010, pp. 857-867.
S. Augustin, P. Wieder, and W. Ziegler, “A Meta-Scheduling Service for Co-
allocating Arbitrary Types of Resources,” Grid Resource Management Workshop
2005, Parallel Processing and Applied Mathematics, 6th International
Conference, 2005, pp. 782-791.
N.A. Mehdi, A. Mamat, H. Ibrahim, and S.A.P. K, “Multiphase Scalable Grid
Scheduler Based on Multi-QoS Using Min-Min Heuristic,”(IJACSA)
International Journal of Advanced Computer Science and Applications, vol. 1,
2010, pp. 10-14.
B. Nazir and T. Khan, “Fault Tolerant Job Scheduling in Computational Grid,”
International Conference on Emerging Technologies, IEEE, 2006, pp.708-713.
M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor-a hunter of idle
workstations,” Proceedings of The 8th International Conference on Distributed
Computing Systems. Soc. Press, 1988, pp. 104-111.
H.C. Krijn Raadt, Yang Yang, “Practical Divisible Load Scheduling on Grid
Platforms with APST-DV,” In Proc. of the 19th International Parallel and
Distributed Processing Symposium – IPDPS’05, 2005, p. 29b.
S.S.V. H. A. Sanjay, “A strategy for scheduling tightly coupled parallel
applications on clusters,” Concurrency and Computation:Practice and
Experience, vol. 21, 2009, p. 2491–2517.
M. Pasquali, R. Baraglia, G. Capannini, L. Ricci, and D. Laforenza, “A multi-
level scheduler for batch jobs on grids,” The Journal of Supercomputing, vol. 57,
Feb. 2011, pp. 81-98.
C.-T. Yang, K.-Y. Chou, and K.-C. Lai,“ Design and implementation of an
adaptive job allocation strategy for heterogeneous multi-cluster computing
 systems,” Concurrency and Computation: Practice and Experience, vol. 23,
2011, p. 1701–1722.
S.K. Dimitriadou and H.D. Karatza, “Multi-Site Allocation Policies on a Grid and
Local Level,” Electronic Notes in Theoretical Computer Science, Elsevier B.V.,
2010, pp. 163-179.
V. Kravtsov, P. Bar, D. Carmeli, A. Schuster, and M. Swain, “A scheduling
framework for large-scale, parallel, and topology-aware applications,” Journal of
Parallel and Distributed Computing, vol. 70, Sep. 2010, pp. 983-992.
G.A.-R.G.E.M. El-Sayed, “A High Performance Dynamic Meta-Scheduler with
Migration Support for Grid Applications,” 2007.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 26

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson,
K. Kennedy, C. Kesselman, J. Mellor-crummey, D. Reed, L. Torczon, and R.
Wolski, “The GrADS Project: Software Support for High-Level Grid Application
Development,” International Journal of High Performance Computing
Applications, vol. 15, 2001, p. 327–344.
H. Dail, “A decoupled scheduling approach for Grid application development
environments,” Journal of Parallel and Distributed Computing, vol. 63, May.
2003, pp. 505-524.
F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, a Su, and D.
Zagorodnov, “Adaptive computing on the grid using AppLeS,” IEEE
Transactions on Parallel and Distributed Systems, vol. 14, Apr. 2003, pp. 369-
382.
F.B.A.R. Wolski, “The Apples Project: A Status Report,” Proceedings of the
Eight NEC Research Symposium, Germany, May, 1997, p. 19.
Henri Casanova and Jack Dongarra, “NetSolve: A network Server for Solving
Computational Problems,” The International Journal of Supercomputer
Applications and High Performance Computing, vol. 11, 2000, p. 212-223.
J.H. Abawajy, “Fault-Tolerant Dynamic Job Scheduling Policy,” ICA3PP, 2005,
pp. 165-173.
M. Nandagopal, “Hierarchical Status Information Exchange Scheduling and Load
Balancing For Computational Grid Environments,” Journal of Computer Science,
vol. 10, 2010, pp. 177-185.
J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, and S. Augustin, “GridFlow : Workflow
Management for Grid Computing,” Cluster Computing and the Grid, 2003.
Proceedings. CCGrid, 2003, pp. 198 - 205.
M.A. E. Fern´ Andez, E. Heymann, “Scheduling for Interactive and Parallel
Applications on Grids,” 2008.
S. Prabhakar, “Zone Based Scheduling : A Framework for Scalable Scheduling of
SPMD parallel programs on the Grid,” 2003.
F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-Level
Scheduling on Distributed Heterogeneous Networks(Technical Paper),”
Proceedings of Supercomputing ACM/IEEE, 1996, pp. 1-29.
H. Dail, R. Wolski, and A. Grimshaw, “Application-Aware Scheduling of a Meg-
netohydrodynamics Application in the Legion Metasystem,” Heterogeneous
 Computing Workshop. (HCW 2000) Proceedings. 9th, 2000, pp. 216 - 228.
F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, a Su, and D.
Zagorodnov,“Adaptive computing on the grid using AppLeS,”IEEE Transactions
on Parallel and Distributed Systems, vol. 14, Apr. 2003, pp. 369-382.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE126 - 27

[39]

[40]

[41]

[42]

[43]

[44]

[45]

“GT4.1.3 information services (MDS) http://www.globus.org/toolkit/docs/devel-
opment/4.1.3/.”
R. Wolski, T. Spring, and J. Hayes,“The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing,” Journal of
Future Generation Computing Systems, vol. 15, 1999, p. 757--768.
P. Lemarinier, “MPICH-V2 : a Fault Tolerant MPI for Volatile Nodes based on
Pessimistic Sender Based Message Logging,” Proceedings of the ACM/IEEE
 SC2003 Conference (SC’03), 2003.
T. Herault, P. Lemarinier, F. Cappello, and I. Lri, “MPICH-V Project : a
Multiprotocol Automatic Fault Tolerant MPI,” 2001, pp. 1-12.
M.V. Reddy and S. Chaudhary, “Scheduling in Grid: Rescheduling MPI applicat-
ions using a fault-tolerant MPI implementation,” 2nd International Conference
on Communication Systems Software and Middleware, IEEE, 2007, pp. 1-8.
P. Lemarinier and D.P. Sud, “MPICH-V2 : a Fault Tolerant MPI for Volatile
Nodes based on Pessimistic Sender Based Message Logging,” Proceedings of the
 ACM/IEEE SC2003 Conference (SC’03), 2003.
G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T.

 Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov,
“MPICH-V : Toward a Scalable Fault Tolerant MPI for Volatile Nodes,”
Proceedings of the IEEE/ACM SC2002 Conference (SC’02), 2002.

http://www.globus.org/toolkit/docs/devel-

