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ABSTRACT

This paper presents algorithms for overcoming a common problem of gamma ray spectroscopy,
namely the peak pileup recovery problem. Three different approaches are studied and evaluated within a
spectroscopy system. The algorithms are evaluated by the means of parameters error and fitting error
calculations. The first approach is a direct search based on Nelder-Mead technique without any
derivatives in order to find the local minimum points.  A Gaussian shape in conjunction with the peak
height and its position of each pulse are used to construct the pulse. So, the main pulse parameters such as
peak amplitude, position and width can be determined. The second algorithm is based on the nonlinear
least square method. This approach has accuracy of recovering the original pulses with mean square error
of 4.7306x10-12. In this paper another technique is tried. This technique which is proposed as third
algorithm is based on a maximum peak search method combined with the first derivative method to
determine peak position of each pulse. Comparison among these approaches is conducted in terms of
parameters errors. The pulse parameters have been calculated and compared with the actual one. The
second approach shows the best accuracy, for determining peak height and position, but the width
parameter scored the highest error.
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1. INTRODUCTION

Spectroscopic gamma-ray detectors are used for many research, industrial, medical and
homeland-security applications [1-4]. The advantages of a digital system for gamma ray
spectroscopy in comparison with a classical analog system are reflected in the possibilities of
implementation of complex algorithms and simple and rapid modification of algorithms used
for signal processing. Using these systems the highest quality of measurements is achieved at
both low and high counting rates with various radiation detectors [5]. Thallium-doped sodium
iodide (NaI(Tl)) scintillation crystals coupled to photomultiplier tubes provide medium
resolution spectral data about the surrounding environment. These effects are hardware-
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dependent and have strong effects on the radioisotopic identification capability of NaI(Tl)-
based systems. Pulse pileup distortion is a common problem for radiation spectroscopy
measurements at high counting rates [4-6]. Moreover, pileup is one of the most delicate
problems of any spectrometric method that is related to the extraction of the correct information
out of the experimental spectra. In many applications as much as 80% of information can be lost
due to the effects of dead time and pulse pileup [7]. The effects of pulse pileup in applications
of nuclear techniques include the following issues. Imposing a fundamental limit on detector
throughput (and therefore source intensity), decreased spectral accuracy and resolution, as peaks
in the energy spectrum spread, reduced peak-to-valley ratios due to false detection of pulses,
and causing significant detector dead time in the system [7]. Therefore without a correction on
the response function of the detector system incorrect physical data are obtained from an
analysis of measured spectra [8]. The deconvolution methods are widely applied in various
fields of data processing and various approaches can be employed [8]. On one hand it must
decompose completely the overlapping peaks while preserving as much as possible their
heights, positions, areas and widths. The objective of this paper is to study different algorithms
implementing these methods. So, we discuss the performances of three different pileup recovery
algorithms; direct search, least square fitting, and first derivative combined with maximum peak
search algorithms. Our primary focus is the analysis of pileup signals collected from detector
systems to obtain high accuracy of the spectroscopy. The influence of white Gaussian noise on
the recovery performance in the direct search and least square fitting algorithms is furthermore
discussed. Pileup correction of gamma ray spectroscopy using these three different algorithms is
studied. These algorithms have the advantages of decomposition of multiple overlapping events
into their original peaks. This paper is organized as follows: Section 2 presents the spectroscopy
system. The more interesting characteristics of pileup recovery algorithms, and registration or
rejection of the peak height are represented in Section 3. Comparison between the three
algorithms and discussion are summarized in Section 4 and we terminate our study by a briefly
discussion and stating some important conclusions that we noted from our obtained results.

2. SYSTEM COMPONENT

In this system, the components of the system for evaluation of different pileup recovery
algorithms are described. It contains the following elements; 137Cs point source, scintillation
detector, amplifier, digital system and connection to a desktop personal computer (PC). An 1.5
inches x 7.5 inches NaI(TI) scintillation detector is used to detect  the radiation signal from
Cs137 point source. This detector is connected to amplifier through coaxial cable which in turn
connected to the PC through digital scope. The digital scope used for signal digitization with
sampling frequency of 16MS/s. MATLAB environment is used to perform background
corrections, pileup, and spectrum evaluation.

3. EVALUATION OF PILEUP RECOVERY ALGORITHMS

3.1. General Pileup Recovery Using Deconvolution [9]

The differential pulse height spectrum that is recorded from any radiation detector is the
convolution of its inherent response function and the energy distribution of the incident
radiation. The deconvolution is sometimes used for the process of resolving or decomposing a
set of overlapping peaks into their separate components by different techniques. Pulse pileup is
an important issue for radiation spectroscopy applications of scintillation detectors, since the
maximum counting rate is limited by pulse pileup. Radiation particles are emitted from a source
following the interval distribution as shown below [4, 9, 10]

( ) n t
nf t dt e dt − ∆∆ =                                                                                                            (1)

where λn, Δt, and dt denote the true average emission rate of the radiation, the time interval
between the current time pulse stamp and the relative origin of the time axis (that is
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conveniently the occurrence time of the previous pulse), and the infinitely small time interval
between Δt and Δt+dt. A certain amount of light collection time is necessary for good energy
resolution.
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Figure 1. Probability of absence of pileup with the true counting rate at different pulse widths

The probability P (N) for one pulse to occur without piling up with subsequent pulses may be
estimated by

( ) nP t e   −∆ > =                                                                                                                   (2)

where   is the first pulse width. Figure 1 shows the probability curve of absence of pileup
against true rate at different pulse widths. As illustrated in this figure for applications where
counting rate can be kept very low, pulse pileup distortion is not a problem. Also, the
probability of absence of pileup decreases with increases the width of the first pulse. From the
figure, we observe the dependency of pileup probability on both pulse width and true rate. In the
following, three different algorithms for the pileup recovery are investigated.

3.2. Direct Search Method

Here, we are interested in resolving or decomposing a set of overlapping peaks into their
separate components. Nelder-Mead modified simplex technique is used for this purpose. Direct
search is a method for solving optimization problems that does not require any information
about the gradient of the objective function. As opposed to more traditional optimization
methods that use information about the gradient or higher derivatives to search for an optimal
point, a direct search algorithm searches a set of points around the current point, looking for one
where the value of the objective function is lower than the value at the current point. We can use
direct search to solve problems for which the objective function is not differentiable, or even
continuous [11]. Direct search is used to describe sequential examination of trial solutions
involving comparison of each trial solution with the "best" obtained up to that time together
with a strategy for determining what the next trial solution will be [12]. It remains popular
because of their simplicity, flexibility, and reliability. Examples of direct search methods are the
Nelder-Mead Simplex method, Hooke and Jeeves' pattern search, the box method, and Dennis
and Torczon`s Parallel Direct Search Algorithm (PDS) [13]. The simplex algorithm is one of the
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earliest and best known optimization algorithms. This algorithm solves the linear programming
problems. The algorithm moves along the edges of the polyhedron defined by the constraints,
from one vertex to another, while decreasing the value of the objective function at each step. A
modified simplex method for finding a local minimum of a function of several variables has
been devised by Nelder and Mead [14]. The Nelder-Mead modified simplex algorithm succeeds
in obtaining a good reduction in the function value using a relatively small number of function
evaluations. This method finds the minimum of a function of several variables [15], starting at
an initial estimate. This is generally referred to as unconstrained nonlinear optimization. Search
methods that use only function evaluations (the simplex search of Nelder-Mead) are most
suitable for problems that are very nonlinear or have a number of discontinuities. Since, it is a
direct search method it does not use numerical or analytic gradients [11]. Despite its widespread
use, essentially no theoretical results have been proved explicitly for the Nelder-Mead algorithm
[16]. For two variables, a simplex is a triangle, and the method is a pattern search that compares
function values at the three vertices of a triangle. The worst vertex, where the function value is
largest, is rejected and replaced with a new vertex. A new triangle is formed and the search is
continued. The process generates a sequence of triangles (which might have different shapes),
for which the function values at the vertices get smaller and smaller. The size of the triangles is
reduced and the coordinates of the minimum point are found. This algorithm is stated using one
time the term simplex (a generalized triangle in N dimensions) and other time Nelder-Mead to
find the minimum of a function of N variables. It is effective and computationally compact [14].
In other words, if n is the length of vector, x, a simplex in n-dimensional space is characterized
by the n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle; in three-
space, it is a pyramid. At each step of the search, a new point in or near the current simplex is
generated. The function value at the new point is compared with the function's values at the
vertices of the simplex. Usually, one of the vertices is replaced by the new point, giving a new
simplex. This step is repeated until the diameter of the simplex is less than the specified
tolerance [11]. The MATLAB implementation of this algorithm finds both local minimum and
maximum for a function without derivative [11]. Figure 2 depicts the algorithm for pileup
recovery peaks using Nelder-Mead direct search method. As shown in this figure, this algorithm
is applied to two simulated overlapping peaks. Moreover, white Gaussian noise is added to
these peaks to test the accuracy of the algorithm. Nelder-Mead algorithm is essentially a way of
organizing and optimizing the changes in parameters to shorten the time required to fit function
to the required degree of accuracy. The most general way of fitting any model to a set of data is
the iterative method. Consequently, iterative fit is performed. Iterative methods proceed in the
following general way as depicted in Fig. 3. This figure is illustrated as in the following [15]

1) Selects a model for the data;
2) First guesses of all the non-linear parameters are made;
3) A computer program computes the model and compares it to the data set, calculating a

fitting error;
4) If the fitting error is greater than the required fitting accuracy, the program

systematically changes one or more of the parameters and loops back around to step 3.
The pulse parameters; peak position, height and width are determined using this Nelder-Mead
modified simplex algorithm. The pulse shape is constructed using its peak shape as Gaussian
shape [17-20]. Consequently, the original peaks are recovered. Finally, the recovered peaks are
registered as described in the following subsection. This algorithm is applied to two simulated
overlapping peaks as depicted in Fig. 4 (a). Two nonlinear parameters; peak position and width
are determined using this algorithm. A Gaussian shape in conjunction with the peak and its
position of each pulse are used to construct each pulse. The recovered two peaks with the input
pileup peaks are shown in Fig. 4 (b). However, these two peaks are illustrated separately in Fig.
4 (c). The pulse parameters for the two recovered signals are calculated as depicted in Table 1.
These parameters are the pulse position, maximum amplitude, FWHM (full width peak
maximum) and the pulse area. The obtained results showed that peak parameters were able to be
recovered within 0.24% deviations. Figures 5-6 depict the relation between the percent
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parameters errors (he difference between the actual parameters and the parameters of the best-fit
model) against percent fitting error (the RMS difference between the model and the data) for
both the first and second peak, respectively. The values of these errors are determined as
explained in Fig. 3. A basic assumption of any curve fitting operation is that the fitting error and
the parameter error are minimized. The variability of the fitting error is caused by random small
variations in the first guesses, rather than by random noise in the signal. The variability of the
fitting error is caused by random small variations in the first guesses, and by noise in the signal.

1) Input Pileup Signal Containing Two Overlapping Peaks

2) Adding White Gaussian Noise to the Input Signal

3) Applying Nelder-Mead Technique

A) Do Iterative Fit Routine

B)  Determine the Parameters of the Noisy Input Signal

4) Apply Recovery Peaks Routine

5) Detect Illusive Pulses (If Exist)

6) Register Actual Peaks

Figure 2. Pileup recovery using the Nelder-Mead direct search algorithm

Table 1. Average measured parameters for double peaks overlapping

Estimated Parameters Max. Peak Position Pulse Width Area

1st Peak 4.9840 99.8769 100.2060 527.0110

2nd Peak 2.9954 250.0082 200.0181 636.6072
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Figure 3. Flowchart of the iterative methodology
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Figure 4. Peaks recovery using direct search algorithm
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Figure 5. Percent fitting error against percent parameter error for first peak
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Figure 6. Percent fitting error against percent parameter error for second peak

2.3. Least Square Fitting Algorithm

Traditionally, least squares curve fitting is used because it is easy to implement. It provides
effective results in many fields of applications like signal processing, and noise cancellation.
For resolving pileup overlapping peaks, the standard least-square technique is used [21]. The
least squares analysis is used to fit a set of m observations with a model that is non-linear in n
unknown parameters (m > n). Solution of least square fitting problem is an iterative process,
whose convergence speed is problem-dependent. This technique is employed for initial guessing
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of peak parameters. These parameters are peak height, position, and width. The objective of
curve fitting is to find a mathematical equation that describes a set of data. A simple and
improved algorithm to resolve overlapped asymmetric pulses into its component peaks using
nonlinear least square fitting method is reported in [10, 22, 23]. Figure 7 illustrates this
algorithm. Considering voltage waveform, two overlapping peaks are characterized by the
following equation after applying the fitting procedure

( )
( ) ( )2

2

1
1

1 2

T b T b
c c

V T a e a e
− −   − −   

   = +                                                                         (3)

where V(T), a1,2, b1,2, and c1,2 denote the voltage waveform of two overlapping peaks as a
function of time, the amplitude, position and the width of the first and second recovered pulses,
respectively. For signal recovery step, the overlapped peaks were assumed to be a convolution
of its component peaks. It was characterized by Gaussian shape [17-20]. Therefore, the obtained
coefficients are fitted to match the simulated two peaks. Consequently, the two overlapping
peaks are recovered. As a final stage the recovered peaks can be rejected or accepted as
described in the following subsection. Figure 8 shows both the simulated two overlapping peaks
and the fitting Gaussian shape. The two recovered peaks with the original overlapping peaks are
shown in Fig. 9. The calculated mean square error between the input pileup and recovered peaks
of this algorithm was found to be 4.7306x10-12.

1) Input Pileup Signal Containing Two Overlapping Peaks

2) Adding White Gaussian Noise to the Input Signal

3) Applying Nonlinear Least Square Fitting Technique

A) Do Iterative Fit with Gaussian model

B)  Determine the Parameters of the Noisy Input Signal

4) Apply Recovery Peaks Routine

5) Detect Illusive Pulses (If Exist)

6) Register Actual Peaks

Figure 7. Pileup recovery using nonlinear least square fitting algorithm
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Figure 8. Comparison between both the input pileup and the fitting Gaussian shape using the
nonlinear least square method.
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Figure 9. The input pileup peaks and the recovered two overlapping peaks.

2.4. First Derivative and Maximum Peak Search Algorithm

The third algorithm for pileup recovery is a proposed one that is presented in Fig. 10. The
detection of the peak and determination of the peak position can be realized in successive steps,
independent of each other. This algorithm is based on first derivative of peak overlapping
pulses, and a MATLAB routine implementing the maximum peak search algorithm [24, 25, 26].
The differentiation of signals is used to facilitate the detection and location of partially
overlapped Gaussian peaks in a multi-component signal [27]. First derivative method has been
used because it has the capability of spectral discrimination [28-29]. For peak search process,
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most peak search algorithms for γ-ray spectrometry are based on digital filters. The maximum
peak is determined using the maximum peak search routine. This routine search and find local
maxima in the overlapping peaks. Furthermore, this algorithm can be applied using FIR filter.
This filter represents the number of passes of the small running average filter in order to get rid
of small peaks. For signal recovery step, the overlapped peak was assumed to be a convolution
of its component peaks. It was characterized by Gaussian shape as in [17-20]. Therefore, the
obtained coefficients are fitted with the simulated input peaks. Consequently, the two
overlapping peaks are recovered. As a final stage in Fig. 10, the recovered peaks can be rejected
or accepted as described in the following subsection. Figure 11 (a) shows the pulse derivative
amplitude against time for overlapping peaks. Consequently, the first derivative of both peaks is
shown in Fig. 11 (a). From this figure, one can predict the shape of each peak by recalling that
the derivative is the slope of the original signal. The derivative of the signal is positive as the
signal slopes up. However, the derivative of the signal is negative as the signal slopes down. If a
signal has zero slopes, its derivative is zero. Consequently, the location of the maximum in a
peak signal can be computed precisely by computing the location of the zero-crossing in its first
derivative. The peak amplitude of the signal is determined by using a maximum peak search
algorithm as depicted in Fig. 11 (b). The simulated overlapping peak signals are depicted in Fig.
12 (a). The recovered two peaks with the original overlapping peaks are illustrated in Fig. 12
(b). However, these two signals are shown separately in Fig. 12 (c).

1) Input Pileup Signal Containing Two Overlapping Peaks

2) Adding White Gaussian Noise to the Input Signal

3) Do the 1st Derivative Process to Determine Peaks Positions

4) Do Maximum Peak Search Routine to Determine Peaks Heights

5) Develop a Gaussian pulses shape using the obtained parameters

6) Apply Recovery Peaks Routine

7) Detect Illusive Pulses (If Exist)

8) Register Actual Peaks

Figure 10. Pileup recovery using first derivative and maximum peak search algorithm
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Figure 11. a) First derivative result of double peak overlapping signal and b) Maximum peak
amplitudes of the signal.
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Figure 12. Peaks recovery using first derivative with maximum peak search method

2.5. Gaussian Noise Handling

Moreover, white Gaussian noise is added to the overlapping peaks to test the accuracy of the
algorithms. The effect of white Gaussian noise on the three algorithms is studied. The variation
between signal-noise-ratio (SNR) and the maximum error between both the recovered peak and
original peak is depicted in Figure 13. As shown in this figure, the third algorithm is robust
enough to noise at low SNR. However, the first algorithm introduces better results at high SNR.
Consequently, signal preprocessing is essential to achieve low error with the first algorithm.

Time (a. u)

A
m

pl
it

ud
e 

(a
. u

)
D

er
iv

at
iv

e 
A

m
pl

it
ud

e 
(a

.u
)

a

b

A
m

pl
it

ud
e 

(a
. u

)

Time (a. u)A
m

pl
it

ud
e 

(a
. u

)
A

m
pl

it
ud

e 
(a

. u
)

Input Pileup Peaks

Recovered Peaks with Envelop

Recovered Peaks

a

b

c



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE081 - 12

However, the pulse width error is the main reason of high error that originated with the second
algorithm. As a final conclusion, the third algorithms give us satisfactory results in noisy
environment. In contrast, the first and second algorithms show high sensitivity with noise.
Therefore, noise cancellation is essential with the both first and second algorithms.
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Figure 13. Recovered peaks error against SNR for the algorithms

2.6. Registration and Rejection of the Peak Height

Obviously, the occurrence time of the pulse is defined to be the time point where the leading
edge voltage reaches the threshold [9]. Naturally, the time interval between two adjacent pulses
can be defined as the difference of the occurrence time for these two pulses. Based on the above
definitions, it is clear that pulse pileup occurs whenever the time interval of two adjacent pulses
is less than the pulse width of the first pulse [4, 9]. On other hand, for pileup to be avoided, the
interval following each pulse must be greater than the effective pulse width. The recovered peak
is registered if the difference between the two overlapping peaks is grater than the pulse width
otherwise the peak is neglected as follow

1 2
2 1T T

2 2

FWHM FWHM− > + (4)

where FWHM1, FWHM2, T1, and T2 denote the first pulse width, the second pulse width, the
position of the first peak, and the position of the second peak. This means that both recovered
peaks will be registered for all algorithms.

3. COMPARISON BETWEEN THE THREE ALGORITHMS AND
DISCUSSION
In this section, we present comparison between the underlined algorithms. This comparison is
based on the input pileup peaks and the recovered two peaks. The error is found by the
following relation

i iError O S= −                                                                                                                       (5)

where Oi, Si, and i denote the input pileup peaks, the sum of the recovered peaks, and the set of
data, respectively. In order to represent the accuracy and validity of these algorithms,
comparison between both the input pileup and the recovered peaks is made. Figures 14-16 (a)
represent the difference between the original overlapped peaks and the sum of recovered peaks
for the three algorithms, respectively. On other hand, Figures 14-16 (b) show the error between
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the original overlapped peaks and the recovered peaks for the underlined three algorithms
respectively. Furthermore, the input and estimated parameters of both the input pileup and
recovered peaks for the three algorithms is shown in Table 2. Also, the estimated parameters
error of the recovered two peaks for the considered three algorithms is depicted in Table 3.
From these results we notice that the least square method has high accuracy for identifying both
peak height and position of the overlapping peaks than other algorithms. However, the pulse
width error is high to some extent. The first algorithm introduces the best recovered pulse width
result. Also, the main strength of the proposed algorithm is the capability of resolving the
original peaks in noisy environment. However, the first one introduces better results in clean
environment. Therefore, when it combined with noise cancellation procedure that presented in
our previous work [7], it overcomes this problem. From computational point of view, the third
algorithm shows significant run time improvement compared with other two algorithms as
shown in Table 2. The number of events that fall within any one channel will vary in proportion
to its width. The content of a typical channel varies inversely with the total number of channels
provided over the spectrum. The channels content with smaller number of channels is larger
than that with larger number of channels. Moreover, from Fig. 17, we notice that the resolution
enhances with increases the number of channels. As the number of channels increases, the
FWHM decreases. Resolution represents the FWHM with respect to position peak of the
centroid. Consequently, good resolution is obtained. Therefore, resolution enhancement is an
essential step especially at small number of channels.
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Figure 14. Accuracy of the direct search algorithm a) The input pileup peaks and summation of
the recovered two overlapping peaks and b) The error that represents difference between the two
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Figure 15. Accuracy of the least square algorithm a) The input pileup peaks and summation of
the recovered two overlapping peaks and b) The error that represents difference between the two
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Figure 16. Accuracy of the maximum peak search algorithm a) The input pileup peaks and
summation of the recovered two overlapping peaks and b) The error that represents difference

between the two signals

Table 2. Input and estimated parameters of both the input and recovered peaks

Peak Height Position Width

1st

Peak
2nd

Peak
1st

Peak
2nd

Peak
1st

Peak
2nd

Peak
Input parameters 5 3 100 250 100 200

Estimated Value of Direct Search
algorithm

5.0127 3.0025 100.28 251.43 100.51 198.93

Estimated value of Least Square
Algorithm

5 3 100 250 60.06 120.1

Estimated Value of Maximum Peak
Search Algorithm

5.6642 3.0107 104 247
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Table 3. Estimated parameters errors of the underlined three algorithms

Parameters Error Height

Error

Position

Error

Width

Error

Run Time

(ms)

Direct Search algorithm 0.0024 0.0006 0.0005 93

Least Square Algorithm 0 0 0.3994 484.8500

Maximum Peak Search
Algorithm

-0.6645 -0.0110 0.2244 31.2500
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Figure 17. Channel content versus channel number for Cs137 source

5. CONCLUSIONS

Algorithms for overcoming the pileup problem of gamma-ray spectroscopy are presented. Three
different algorithms are studied for pileup recovery. The first one is a direct search algorithm
based on Nelder-Mead technique for determining both the peak position and peak amplitude.
The second algorithm is the least square fitting method that is used to accurately determine the
peak height and position of the overlapping peaks. The third algorithm is a proposed one which
based on the first derivative of the signal combined with maximum peak search algorithm. This
approach uses first derivatives for observing peak locations of pulses. Then, a direct search
method for determining the pulse parameters such as position, maximum amplitude, pulse width
and area are performed. The accuracy of the three algorithms is determined in terms of fitting
accuracy and parameters error calculation of these algorithms. The direct search and maximum
peak search algorithms proved to be satisfactorily robust against increasing level of noise. The
direct search algorithm showed sensitivity to the level of noise. But, when it combined with
noise cancellation procedure it overcomes this problem. From computational point of view, the
first derivative combined with maximum peak search algorithm shows significant speed
improvement compared with other two algorithms. From the obtained results, the least square
fitting method gives better results for both peak height and position than other algorithms.
However, the pulse width remains the main obstacle of this algorithm.
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