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Abstract:

This paper characterizes the performance of direct sequence spread spectrum (DS-SS)
signals from the detection probability point of view. The detection probability of  DS-
SS signals is estimated using wideband radiometer receiver over flat fading channel.
Simulations are performed to evaluate detection probability of DS-SS signals over flat
fading channel for various time bandwidth product values. The results are compared
with the detection probability of DS-SS signals over AWGN channel. The results show
that the fading parameter degrades the detection probability of DS-SS signals. The
performance of DS will be discussed later in the presence of imperfect channel
estimation errors.
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1. Introduction:

The requirement for low probability of intercept (LPI) and jam resistant
communications has led to the development of modulation techniques known as spread
spectrum (SS). The two primary spread spectrum techniques are direct sequence (DS)
and frequency hopping (FH). In DS-SS, the carrier is modulated by a pseudo random
binary code signal operating at a much higher rate than the information signal.[5],[6]
When spread spectrum signals are properly designed they can prevent an interceptor to
detect the presence of radio frequency transmission by dispersing the transmitted energy
below the noise level. The transmitted signal is indistinguishable from the environment
noise level, the optimum approach to detect the signal is by using signal energy
detecting device (radiometer).
A radiometer is a simple energy measuring device designed to detect the presence of
radiated radio frequency energy within a specified bandwidth. There are many types of
radiometers configured to detect any particular type of SS transmission. The wideband
radiometer is the best to be used to detect unknown DSSS transmissions. The wideband
radiometer is shown in Figure (1). [1],[2]
In Figure (1) (a) the modulated received signal is the input to a filter whose bandwidth
is 'W' matched to the spectrum over which signal energy is being searched. The filter is
followed by an envelope detector (a square-law device) and an integrator. The integrator
output is sent to a comparator. If the integrator output is higher than the threshold, a
signal is declared present. In Figure (1) (b) and (c) the received signal is multiplied by
the carrier to be down converted to base-band signal, the demodulated signal is the input
to a low pass filter whose bandwidth is 'W' matched to the spectrum over which signal is
being searched. In (c) output signal from the filter is sampled at rate W1  to obtain
digital signal. The filter is followed by a square-law device and an integrator for (b) or a
summer for (c). The output from the summer is sent to a comparator.

Figure (1): Radiometers: (a) passband, (b) baseband with integration,
and (c) baseband with sampling at rate 1/W and summation
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Assuming that the noise at the input to the radiometer is zero-mean, Gaussian random

process with a flat power spectral density
2

oN
, the total signal energy measured in a filter

of bandwidth W in time T is   and it is independent of the signal waveform.
The performance of radiometer (in terms of  / oN  ) from the probability of detection
( dP ) point of view is[1]
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, where fP  is the probability of false

alarm (if the integrator (summer) output is higher than the threshold and no signal is
present), and oN


 is the estimated noise power spectral density. The expression is valid

when detecting low level signals having large time bandwidth product (TW>>1) over
additive white Gaussian noise AWGN channel.
 The relationship between dP  and N/ o for DS over AWGN channel using wideband
radiometer for various values of time-bandwidth productTW , probability of false alarm

310  and oN


= oN    (analytical and simulated) is shown in Figure (2).
Comparing the intercept ability of DS for different TW, appears that as TW increases
the energy-to-noise  0N  increases, consequently the probability of detection is
improved.
The paper is organized as follows, in section 2 ideal detection of DS-SS signals is
discussed and the performance evaluation of DS-SS signals using wideband radiometer
as a detector over flat fading channel is estimated. In section 3 simulations for the
performance evaluation of DS-SS signals over flat fading channel are shown and
compared with performance over AWGN channel. In section 4 the conclusions are
introduced.

2. Detection of DS-SS signal

Detection theory leads to various detection receivers depending on precisely what is
assumed to be known about the signal to be detected.

2.1 Ideal detection

For ideal detection it is assumed that the chip timing of the spreading wave form is
known and whenever the signal is present, it is present during the entire observation



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE297 - 4

interval. The spreading sequence is modeled as a random binary sequence.
Consider the detection of a DS signal with PSK modulation [1],[4], the DS-SS signal is
given by:

)2cos()(2)(   tftpSts c (2)
where S is the average signal power, cf is the known carrier frequency, and   is the
carrier phase assumed to be constant over the observation interval 0 Tt  . And p(t) is

the spreading wave form given by:  
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sequence and  t  is a rectangular pulse of duration cT .
To determine the signal s(t) is present based on the observation of the received signal,
classical detection theory is applied, choosing between two hypotheses oH (noise only)
and 1H (signal + noise).
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where n(t) is zero-mean, white Gaussian noise with two-sided power spectral density
No/2.
Let   denote the vector of random values that characterize the signal to be detected. The
average likelihood ratio, which is compared with a threshold for a detection decision, is
[1],[8]
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where  ,1Hrf is the conditional density function of r given the hypotheses 1H and the

value of  ,  oHrf is the conditional density function of r given hypotheses oH , and

E is the expectation over the random vector  . In case of AWGN the considered
probability density functions are defined as:[8]
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where{ ls } are the coefficients of the signal, along the thl  orthonormal basis. Where it is
assumed that the signal is expanded over a set of   orthonormal basis thus the received
signal is represented as a vector r=[ 1r 2r ……………. r ]. If  , the average
likelihood ratio may be expressed in terms of the signal waveforms as [1],[8]
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If N is the number of chips, each of duration cT  received in the observation interval,
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then there are N2  equally likely patterns of spreading sequence. For coherent detection,
it is assumed that 0  in (2), substitute into (7) and evaluate the expectation to obtain
[1],[8]
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One can see from (9) that ideal detection of DS-SS requires the knowledge of the
spreading code ip  and perfect synchronization to maximize the ENR and consequently
the probability of detection. However such knowledge is not available for an
interceptor. For that reason the wideband radiometer is introduced in next section to
tolerate these requirements.

2.1Wide-band radiometer detection

The wideband radiometer requires no detailed information about the signals to be
detected other than their rough spectral location, even the modulation type is not
essential parameter for radiometric detection. Suppose that the signal to be detected is
approximated by a zero-mean, white Gaussian process, the channel is slow varying flat
fading. Now consider two hypotheses that both assume the presence of a zero-mean,
band limited white Gaussian process over an observation interval .0 Tt   Under oH

noise only is present, and the one-sided power spectral density over the signal band is
oN . While under 1H , both signal and noise are present and the one sided power spectral

density is 1N over the band. Using   orthonormal basis functions and ignoring the
effects of the band limiting, we find that the conditional densities are approximated by
[1],[8]
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Then calculating the likelihood ratio and merging constants with the threshold, leads to
the decision rule to compare the summer output
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to a threshold tV , as  and use the properties of orthonormal basis functions, it is
found that
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The filter of the radiometer is assumed to be an ideal filter that passes the desired signal
while limiting the noise. It produces the output

)()()( tntsty  (13)
where  = jea.  is the fading parameter, a  is the amplitude of fading parameter, it is
Rayleigh distributed and θ is the phase shift of fading parameter which is uniformly
distributed over  2,0 . Then   follows Gaussian distribution with zero mean and
variance 2 .
The band limited  signal can be represented as [1],[3]
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where cs (t) and ss (t) are the in-phase and quadrature components of s(t) respectively.
These components are low pass signals confined for 2/Wf  . Also the noise passing
through the filter can be represented as
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squaring and integrating y(t), and assuming that Wf c   and Tf c /1 , we get
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The sampling theorem for deterministic and stochastic processes provide expansions of
)(tsc , )(tss , )(tnc and )(tns  that facilitate the analysis. For example [1],[5]
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Let  TW , where  x  denotes the integer part of x. Substituting expansions similar to
(17) in (16) and use approximations and it is always assumed TW 1 .
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The power spectral density of )(tnc , )(tns are

   





0
o

sc

N
fNfN

2

2

Wf

Wf




(19)

and the associated autocorrelation functions are
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where
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The signal is assumed to be a Gaussian process with unit variance and mean
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Then the signal energy probability density function is[1]
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where  nI  is the modified Bessel function of the first kind and order n  defined by

   

















0

2

1!
2

i

in

n ini

x

xI ,  is the gamma function.

Also the fading parameter is assumed Gaussian with zero mean and variance 2 , thus
the square of  fading parameter is central chi-squared distribution with zero mean. Its
probability density function is[4],[5]
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and the probability function of Z is given by
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Since the detection probability dP  is declared if V tV  when the signal is present
indicates that
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The above integration is hard to evaluate, for TW>100, if V  is approximated by a
Gaussian random variable, then the direct application of the statistics of Gaussian
variables to (21) yields
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When tV  is specified the value of energy-to-noise ratio necessary to achieve a specified
value of dP  may be obtained by inverting (34) and substitute by tV  in the inverted
function yielding to
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energy to noise ratio increases.

3. Computer Simulations

Simulation program is performed using matlab to show the performance of DS from the
probability of detection point of view, the probability of detection is plotted versus the
required energy-to-noise ratio for various time-bandwidth product values. Assuming
that the noise power spectral density estimated to calculate the threshold level matches
the noise power spectral density at the receiver input used to calculate the probability of
detection. In Figure (2) comparison between analytical and simulation results for the
performance of DS over AWGN channel is declared using wideband radiometer, oN/
is set to be [0:30 dB], the probability of false alarm is set to be 310 , it is seen that as
TW has a small value the analytic and simulated curves are closed to each other, and
when TW increases there is a small difference between the analytic and simulated
curves, it is also seen that increasing TW requires an increasing in the energy-to-noise
ratio to maintain the same probability of detection. In Figure (3) comparison between
analytical and simulation results for the performance of DS over flat fading channel is
declared, oN/  is set to be [0:30 dB], the probability of false alarm is set to be 310 , and
the fading parameter is set to be 0.457, it is seen that as TW has a small value the
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analytic and simulated curves are closed to each other, and when TW increases there is a
small difference between the analytic and simulated curves, it is also seen that
increasing TW requires an increasing in the energy-to-noise ratio to maintain the same
probability of detection. In Figure (4) comparison between the performance of DS
Simulation program is performed using matlab to show the performance of DS from the
probability of detection point of view, the probability of detection is plotted versus the
required energy-to-noise ratio for various time-bandwidth product values. Assuming
that the noise power spectral density estimated to calculate the threshold level matches
the noise power spectral density at the receiver input used to calculate the probability of
detection. In Figure (2) comparison between analytical and simulation results for the
performance of DS over AWGN channel is declared using wideband radiometer, oN/
is set to be [0:30 dB], the probability of false alarm is set to be 310 , it is seen that as
TW has a small value the analytic and simulated curves are closed to each other, and
when TW increases there is a small difference between the analytic and simulated
curves, it is also seen that increasing TW requires an increasing in the energy-to-noise
ratio to maintain the same probability of detection. In Figure (3) comparison between
analytical and simulation results for the performance of DS over flat fading channel is
declared, oN/  is set to be [0:30 dB], the probability of false alarm is set to be 310 , and
the fading parameter is set to be 0.457, it is seen that as TW has a small value the
analytic and simulated curves are closed to each other, and when TW increases there is a
small difference between the analytic and simulated curves, it is also seen that
increasing TW requires an increasing in the energy-to-noise ratio to maintain the same
probability of detection. In Figure (4) comparison between the performance of DS
detection over flat fading channel and AWGN channel is presented oN/  is set to be
[0:30 dB], the probability of false alarm is set to be 310 , and the fading parameter is set
to be 0.457, it is shown that the fading parameter degrades the probability of detection.
In Figure (5) Comparison between the required energy to noise ratio versus different
values of TW to specify the desired probability of detection and defined threshold level
is declared, the probability of detection is set to be 0.99 and various values of
probability of false alarm, also it is shown the sensitivity of the radiometer to errors in
noise power spectral density estimation as TW increase due to the bias term TWN o .
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4. Conclusions:

This paper discusses the performance evaluation using wide-band radiometer for
detection of DS-SS signal over flat fading channel. Ideal detection requires previous
knowledge about the received signal. The wideband radiometer requires no detailed
information about the signal to be detected even the modulation. Also, it is seen that
as the time bandwidth product (TW) increases the energy-to-noise ratio required to
maintain the same probability of detection increases. It is clear that the fading effect
degrades dP  compared with the AWGN. Single radiometer is incapable of determining
whether one or more than one signal has been detected. It is shown that the radiometer
is sensitive to errors in noise estimations as TW increases due to the bias term TWNo .
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