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Abstract:

Alert correlation is a promising technique in intrusion detection. It analyzes the alerts
from one or more intrusion detection system and provides a compact summarized
report and high-level view of attempted intrusions which highly improves security
effectiveness. Correlation component is a procedure which aggregates alerts
according to certain criteria. The aggregated alerts could have common features or
represent steps of pre-defined scenario attacks. Correlation approaches composed of
a single component or a comprehensive set of components. The effectiveness of a
component depends heavily on the nature of the real alerts or the dataset analyzed.
The order of correlation components affects the correlation process performance.
Moreover not all components should be used for different dataset. This paper
presents implementation of an Agent Based Correlation Model for real-time intrusion
detection alerts. Learning agent learns the nature of alerts within a network then
guides the whole correlation process and components in such a suitable way of which
components could be used and in which order. The model improves the performance
of correlation process by selecting the proper components to be used. The simulation
results showed that ABCM model assures minimum alerts to be processed on each
component depending on the dataset and minimum time for correlation process.

Keywords:

Alert Correlation; Intrusion Detection; Learning Agent; Agent-Based Systems

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
* Egyptian Armed Forces

** Computer and Systems Engineering Department, College of Engineering, Ain Shams University, Abasia,
Cairo, Egypt.



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE084 -2

1. Introduction:

Intrusion detection is an essential technique which provides an extra layer of defense
when security mechanisms (authentication, authorization, and auditing) fail.  Intrusion
Detection System (IDS) can detect either outside intrusions or monitors unauthorized
activities inside the network. However IDS have some limitations which affect its
performance. First, IDS is prone to producing a large number of alerts, which is
difficult for experts to analyze and discover causal relationships in alert streams.
Second, false positives and false negative of IDS are inevitable. Third, IDS can only
detect single attack but not multi-step attacks, to detect which network security
experts need to analyze manually. Finally, it is hard to deploy IDS in large scale
network.

To tackle this issue, researchers and vendors have proposed alert correlation, an
analysis process that aggregates and correlates the alerts. We can strikingly refine
information quality of the alerts by this technique. Alert correlation gives network
security administrator compact reports which provide a high-level view of intrusions
and has drastically reduced the security experts’ task. Analyzing the alert correlation,
the security expert can evaluate overall network security incident and take counter
measures instantly.

2. Alert Correlation Process:

There are three famous techniques [1, 2] for alert correlating which are Similarity-
based, Pre-defined attack scenarios and Pre-requisites and consequences of
individual attack. There are two architectures for alert correlation system: centralized
architecture [3] and distributed architecture [4, 5]. The key process unit of centralized
architecture is Central IDS Correlation Node, which directly processes alerts from
multiple IDS sensors. The correlation algorithm of this architecture is simple and can
correlate overall alerts quickly. Distributed architecture composed of a set of
correlation nodes and categorized as complete distributed architecture or hierarchical
distributed architecture.

Many tools and techniques have been implemented for alert correlation [6-8]. This
paper will focus on an alternative approach model for real-time alert correlation [9,
10] which has been produced as integrated solution. It consists of a set of correlation
components which cover different correlation techniques. As shown in Figure 1, the
alert correlation module is composed of a set of procedures which can be arranged in
different ways. The module input alerts in the Intrusion Detection Message Exchange
Format (IDMEF) [11]. Some procedures process data of an alert and the others
implement correlation methods by combining alerts using individual filters.

Six main components have been implemented depending on five types of filters:
Fusion, One2One, Network-Host, One2Many, and Many2One. The correlation
components which effectively reduce alerts are:  Alert Fusion (AF) which combines
duplicate alerts that represent the independent detection of the same attack by
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different IDS. Alert Verification (AV) which takes a single alert and determines the
success of the attack corresponding to that alert. Thread Reconstruction (TR) which
combines a series of alerts that refer to attacks launched by a single attacker against a
single target. Attack Session Reconstruction (ASR) which associates network-based
alerts with host-based alerts that are related to the same attack, the goal of ASR
component is to link network-based alerts to related host-based alerts.

Focus Recognition (FR) which identifies the hosts that could be the source or the
target of a substantial number of attacks. More specifically, this component
aggregates the alerts associated with a single host attacking multiple victims (called a
one2many scenario), and a single victim that is targeted by multiple attackers (called
a many2one scenario). Multi-Step Attack (MSA) which identifies common attack
patterns such as recon-breakin-escalate or island-hopping attacks {attacker breaks
into a host and uses it as a launch for more attacks}. The victim in one alert becomes
the attacker in the following one

There are more additional two components: impact analysis, and prioritization, that
depend on the nature and the policy of the protected network. However, both of them
are not evaluated in this approach. The study of the model (Table 1) shows that
normalization and pre-processing are necessary for alert attributes setting. TR and
FR, that have the highest Reduction Rate (RR) percentage {RR is the rate of
reduction of input alerts to produce output alerts}, are considered the most effective
components used for all datasets. Both AF and MSA have lower RR values, yet they
are still used for the most of datasets.  Each of AV and ASR does not have any effect
except on one dataset only. It is concluded that the affected correlation components
are six (AF, AV, TR, ASR, FR, MSA), but not all of such components are used for
all different dataset (The average is 3.7 component).

The sequence order of correlation components affects the correlation process
performance; the total time needed for the whole process depends on the number of
processed alerts in each component. Table 1 shows analysis result of the
effectiveness of each component on the different analyzed datasets. The last row
shows the total count of effective components whose reduction rate is more than zero
value. Such count differs according to the dataset, and varies  from minimum two
components in the case of “ Rome AFRL” dataset to five in the case of” Treasure
hunt”. The RR for each component varies from 0 to 99.91 % depending on the
component algorithm and selected dataset. Different reduction rates of each
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Figure (1): Correlation process overview
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component simply affect the following component input of alert stream, i.e. the
arrangement of components is a primary concern for each dataset to obtain faster
correlation process.

Table (1): Reduction Rate matrix for components/datasets
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3. AGENT BASED CORRELATION MODEL:

Figure 2 shows the proposed model which presents an Agent Based Correlation
Model (ABCM) for real-time Intrusion Detection Alerts. In this model Smart
Learning Agent (SLA) learns the nature and characteristics of normalized alerts
produced by different IDSs within a network, and then it selects the suitable
correlation components that can be used and their proper order.

The model provides minimum correlation time for all datasets, whatever their nature.
ABCM consists of two phases, learning phase and correlation phase. The input of
ABCM is normalized and pre processed alerts while the output goes to a set of
selected correlation components called Active Correlation Components List (ACCL).
The selection of added components in ACCL depends on agent learning, the output
alerts correlated by ACCL is directed to the last two components of correlation
process. This model is based on the real-time correlation model [9, 10]. However,
instead of using sequence of all correlation components, it uses a set of specific
effective correlation components depending on agent learning.

Figure (2): ABCM correlation process
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3.1. Learning Phase

During the learning phase, SLA learns the output of each component and the dataset
nature. Based on this learning beside a set of rules and knowledge base as well, SLA
can   determine the active correlation components and their proper order. Each
correlation component has specific criteria to aggregate and correlate alerts. The
knowledge base for learning is formed by the criteria for each component in addition
to the RR obtained by each component.

Figure (3): Learning Phase

Algorithm 3.1 Learning Phase

Inputs: (IS) normalized and preprocessed stream of alerts, IP:
number of input alerts, learning parameter (Alerts number N)

Output: (ACCL), set of active correlation components (RRc > 0)

Initialization: Empty ACCL (Ser, CC, RR) ACCL (0,  ,0), k=6
(maximum number of correlation components), m=0

For alerts in N

While k > 1 do

// For each component do

OSc CORRc(IS);
OPc no of alerts in OSc
RRc (1-OPc/IP)*100
if RRc > 0 then
           begin

ACCl(Ser) ser+1;
ACCL(RR) RRc;
ACCL(CC) CC;

           end
Else
// For each component with RRc=0
      begin

Disable component;
m m+1;

      end
end if
/ / end if RR>0

k k-1;
loop
end while
sort ACCL(RR, descending);

end for
return ACCL;
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Figure 3 shows that SLA learning depends on initial inputs. These inputs are:  the
learning parameter which could be a period of time (t) or specific number of alerts
(N); the normalized pre-processed alerts; and a pre generated knowledge base. The
learning phase starts through the execution of initial correlation process. The initial
components order could be as described in model [9, 10], or it could be random. The
implemented model support parallel learning for all correlation components. Each
component aggregates and merges its input alerts according to component algorithm
and criteria. Alerts attributes (source, attack type, destination) are used as the basis of
merging alerts. RR can be calculated through comparing output alerts with input
alerts.  Depending on the value of RR for each component, SLA builds ACCL which
contains the components with RR higher than zero value. Algorithm 3.1 describes the
learning phase process; SLA builds ACCL in descending order of the components
reduction rate. The normalized preprocessed alerts go through their basic correlation
path. By the end of the correlation process of each component, SLA reads RR of each
component. If the RR is higher than zero, the component data will be added to the
ACCL which includes serial, component name, and RR value.

By the end of correlation of the last component, ACCL will contain a specific set of
components with different RR values. The agent sorts these components in
descending order of their RR. Learning phase should be enough for studying the
nature of alerts in the network. Such phase continues depending on the learning
parameter (t or N) and/or assuring no changes of the alerts nature. SLA could be a
part of correlation process by eliminating some alerts depending on the network
nature (alerts against windows server while maintaining UNIX server).

3.2. Correlation Phase
By the end of learning phase, ACCL will contain only effective correlation
components in descending order of their RR. In the correlation phase, the flow of
normalized alerts stream will be controlled by the agent. Alerts are directed to the
first component in ACCL which has higher RR during the learning phase. The output
of the first component will be the input of the second one which has second higher
RR, and so on till they reach the last component in ACCL.

Figure 4 describes correlation phase of the normalized preprocessed alerts. Alerts are
directed through SLA to one path of many alternative paths. These alternative paths
represent different suggested ACCLs which have been implemented previously
during the learning phase.

For example, the analysis of RomeAFRL dataset correlation shows that ACCL has
only FR and TR (Highlighted Boxes in figure 4) with RR values (FR=70.87% and
TR=69.82%), While other four components AF, AV, ASR, and MSA have no effect
on that dataset.
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Algorithm 3.2 shows the correlation phase; ACCL and normalized alerts stream are
both inputs of the algorithm, while the correlated alerts OCc are considered to be the
output. The agent uses the components in ACCL to correlate the input alerts, and
then it moves the pointer of ACCL to the next component, the loop continues till
using all components in ACCL.
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Figure (4): Correlation Phase

Algorithm 3.2 Correlation Phase

Inputs: (IS) normalized and preprocessed stream of alerts, IP:

number of input alerts, ACCL (Ser, CC, RR)

Output: (OS) correlated stream of alerts,

Begin

While ACCL (ser) > 0 (is not empty) do

// loop for all components in ACCL

begin

CORRc(IS) using ACCL(CC);

OSc      CORRc(IS);

OPc      no of alerts in OSc

RRc      (1-IP/OPc)*100

ACCL(CC)   next ACCL(CC);

// next lowest RR component in ACCL

loop

// all components in ACCL have been used

end while

OS  OSc of last component in ACCL

end

 return OS;

Knowledge Base
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3.3. ABCM Implementation

ABCM model was analytically compared with different correlation approaches in
[12]. In this paper a model has been implemented to compare between the proposed
ABCM correlation model and comprehensive Approach Model (CAM) [9, 10].
Random alerts generator component has been used to generate alerts to be used for
correlation either by CAM or ABCM. Figure 5 shows the main interface of the
model. It contains button for alert generator module, these generated alerts could be
saved and loaded again for further process.

Figure (5): Correlation Model Main interface

The main interface contains buttons to correlate the generated alerts using either
CAM or ABCM approaches and showing results for each of them.

Generation of random alerts
depends on several parameters as
shown in Figure 6. These
parameters include windows size,
start time, attack types count,
victim count, and finally attacker
count. These parameters could be
changed to form a specific alerts
nature. By the end of entering these
parameters we choose how many
alerts we want to generate, the
alerts counts could be from
minimum 100 alerts to 100,000
alerts. After generating the alerts
set we can save it using save alerts
button for later use.

Figure (6):  Random Alert Generator Module.

Either by using the current generated alerts or loading of previously saved alerts we
can start correlation of these alerts. CAM button correlates the alerts using CAM
model, it perform the whole correlation process as described in [9, 10]. By the end of
the process we can show CAM results using the button results which display the
CAM correlation results as shown in Figure 7. These results contains input alerts
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count, output alerts count, the reduction rate, and the processing time (msec) for each
component and for the entire correlation process.

Figure (7): CAM model correlation Results

ABCM model correlates same set of generated alerts; it works in three processes as
shown in Figure 8. First step determine the number of alerts to be learned for
generating the ACCL.

Figure (8-a): ABCM
Correlation Process

Figure (8-b): ABCM
Learning Results

Figure (8-c): ABCM
Correlation Results

The generated ACCL may contain all correlation components or a specific set of
them depending on the learned alerts. After determining of the learned alerts count,
learn button could be used to start learning process which finally produces ACCL
and indicates which components used and the reduction rate obtained by each
component as shown in Figure 8-b.

After generating of ACCL in learning phase, the execute button will be used to
perform the correlation for all generated alerts using the sequence in ACCL which
finally produce the ABCM correlation results as shown in Figure 8-c. These results
include input alerts count, output alerts count, and reduction rate for each
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components, then finally the total reduction rate by ABCM and the total correlation
time (milliseconds).

4. Experimental Results:
Performance of each correlation approach depends on the generated alerts; results of
applying both correlation approaches on the generated alerts are shown in Table 2.
Table 2 shows that ABCM has the lower correlation time compared with CAM for
different sets of generated alerts. ABCM correlation has very short correlation time
compared with CAM , minimum ABCM correlation time is 4.07 sec compared with
minimum CAM correlation time 29.89 second in case of 11953 alerts. Where
maximum correlation time using ABCM is 53 second compared with 1082 second
obtained by CAM in case of 100000 alerts.

Table (2): Correlation Times of CAM and ABCM

Correlation Time
(Sec)

No Of
Alerts

CAM ABCM

Time
Reduction %

11953 29.89 4.074 86.37
22230 57.206 14.731 74.25
30578 126.954 14.849 88.30
40000 143.677 15.304 89.35
50050 278.696 21.279 92.37
60209 389.878 23.822 93.89
70350 539.748 28.179 94.78
80528 704.469 31.021 95.60
90400 1006.737 41.926 95.84
999999 1082.055 53.579 95.05

Last column in table 2 shows the Reduction of Time (RT) percentage obtained by
ABCM compared with CAM [9, 10]. ABCM time reduction rate varies from value of
74 % in case of 22230 alerts count to value of 95 % in case of alerts count more than
80000. Figure 9-a shows graph chart representation of correlation time in case of
CAM and ABCM models for different alerts count which varied from 10000 alerts
till 100,000 alerts.  The graph shows the big difference in time and the time saved
using ABCM instead of CAM approach.

Table 3 shows reduction rate obtained by CAM and ABCM for different sets of
generated alerts. The results show that ABCM almost has similar accuracy of
reduction rate obtained by CAM. Last column in Table 3 indicates the difference in
RR for both approaches. It shows that the RR obtained by ABCM is fewer than RR
obtained by CAM with value less than one in most cases, while both RR almost
equal in case of correlation of very large number of alerts.
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Figure 9-b shows chart representation of CAM and ABCM reduction rate values, the
graph shows the RR values for both correlation approaches very similar for different
sets of generated alerts.

Figure (9-a): Correlation time comparison for CAM and ABCM

Table (3): Reduction Rates of CAM and ABCM

Reduction Rate %No Of
Alerts CAM ABCM

Difference in
RR

11953 89.40 87.62 1.78
22230 94.99 94.06 0.94
30578 95.66 95.03 0.63
40000 96.22 96.04 0.18
50050 97.12 96.36 0.76
60209 98.08 96.98 1.10
70350 98.06 97.43 0.63
80528 98.30 98.08 0.23
90400 98.44 98.29 0.15
999999 98.50 98.64 -0.01
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Figure (9-b): Reduction Rate comparison of CAM and ABCM

5. Conclusions and future work:
In this paper, an Agent Based Correlation Model (ABCM) for real  -time intrusion
detection alerts has been implemented. The model works through learning phase and
correlation phase. In the learning phase SLA learns the nature of alerts datasets and
effective correlation components and their RR and builds ACCL. The ACCL
contains the effective correlation components in descending order of their RR.
Depending the learning phase, the agent controls the correlation process during the
correlation phase using the implemented ACCL. The order of correlation starts with
component with higher RR in ACCL then followed by lower RR until correlation by
the last component in ACCL.

The proposed model improves the correlation process performance by decreasing the
total correlation time. The results showed that ABCM has better performance
compared with CAM by average percentage 90% of time reduction for all generated
alerts. ABCM has almost same reduction rate compared with CAM. That means the
proposed model maintains the same correlation accuracy provided by CAM in less
time and less number of components.

The proposed model is scalable regarding the number of correlation components in
ACCL.  The hardware improvement needed for agent process in each phase is not
significant and causes no problem in recent technology.

The implemented ABCM model could be used for real-time intrusion detection
alerts. Future work will include investigation the optimal learning parameters and
combining both phases to support continuous adaptive learning during correlation
process. Also distributed correlation agents would be investigated to assure scalable
alert correlation for large scale network.
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