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Abstract:

This paper proposes a procedure for solving a security constrained optimal dispatch
(SCOD) problem under normal and emergency conditions using ant colony optimization
(ACO) algorithm. The objective function is to minimize the non-linear generation cost
function by optimizing the settings the real power generation outputs under equality and
inequality constraints. The proposed algorithm is applied to 5-bus system, IEEE 14-bus
and IEEE 30-bus test systems. An application of the proposed algorithm to the west
Delta network (WDN) as a part of the Unified Egyptian Network (UEN) considering the
valve-points effects has been demonstrated. Numerical results are compared with those
obtained using conventional optimization techniques as linear programming (LP), fuzzy
linear programming (FLP) technique and genetic algorithm (GA). Simulation results
show that the proposed ACO algorithm for the SCOD is more accurate and efficient,
especially with increasing the system size.
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1. Introduction:

Security constrained optimal dispatch (SCOD) is one of the optimization problems in
power systems that optimally allocate the power demand among the committed
generators in economical manner while satisfying system security constraints. The
problem becomes more complicated due to the non-linear nature of the objective
function and constraints of real life problems. The objective function may be convex or
nonconvex based on the characteristic of the supply. Different optimization methods
were used for solving the economic dispatch (ED) problem. Madrigal and Quintana [1]
presented an analytical solution to the classic economic dispatch problem using duality
theory to derive an expression to compute both the exact primal (dispatches) and dual
(marginal cost) solution to the problem without the need for numerical iterative
optimization algorithms. No conflict of interest is caused if the (ED) model is used as an
optimization-based electricity auction. C. Chen and N. Chen [2] solved the economic
dispatch problem considering transmission capacity constraints using direct search
method (DSM) to handle a number of inequality and equality constraints and units with
any kind of fuel cost functions. For improving the performance of direct search
procedure, a novel strategy with multi-level convergence is incorporated in the DSM to
minimize the number of total iterations in the searching process.
Pathom et al. [3] presented a methodology for solving the dynamic economic dispatch
(DED) problem using evolutionary programming (EP) combined with sequential
quadratic programming (SQP) that consists of two parts. The first part employed the
property of EP which can provide a near global search region at the beginning. When
the specified termination criteria of EP are reached, the local search SQP is applied to
tune the control variables to obtain the final optimal solution. Qing et al. [4] proposed a
novel approach based on the analysis of the process of solution of ED problem by
Lagrangian Relaxation, called dynamic queuing (DQ) algorithm.
Xihui and Quintana [5] presented an improving an interior-point based OPF by a
predictor-corrector primal-dual log-barrier (PCPDLB) method as a sequence of
linearized sub-problems. Rabih et al. [6] presented a homogeneous interior point (HIP)
method for the ED problem by approximating the network constraints through the DC
load flow, and the transmission losses through the B-matrix loss formula. Lin et al. [7]
analyzed the mixed integer OPF based on the interior point cutting plane method
(IPCPM). Also, they presented a new base identification method based on the
improvement of IPCPM to solve the problems of degenerate solutions and convex
combination solutions that depends on the difference between nonzero element number
of optimal solution and rank of coefficient matrix.
Dragan et al. [8] demonstrated the feasibility of using a fuzzy expert system, based on
interactive fuzzy linear programming (FLP) to optimal power system rescheduling
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problem, incorporating the preventive redispatch. Their aim was to explore the
feasibility of creating an intelligent power system rescheduling system. Pathom et al. [9]
proposed the fuzzy-optimization approach for solving the (DED) under an uncertain
deregulated power system. Nima and Hadi [10] presented a real-coded genetic
algorithm (RCGA) with arithmetic-average-bound crossover (AABX) and hybrid
mutation (HM) to solve the nonconvex ED problem. Through few recent years, ACO
algorithms are employed to solve optimization problems in different fields with more
accurate and efficiently solution compared with conventional and other modern
optimization algorithms.
     In this paper, an ACO-based algorithm is proposed to solve the non-smooth ED
problem. The minimization of the total fuel generation costs is considered as an
objective function with equality and inequality constraints.

2.Problem formulation:

The SCOD problem can express as a constrained optimization problem as:
( )

subject to:

g(x) = 0

h(x)  0

Min f x



(1)

Where, f(x) is the objective function such as generators fuel costs, g(x) represents the
equality constraints, h(x) represents the inequality constraints, and x is the vector of the
control variables that may be generator real power outputs.
In this paper, the objective function is the non-linear fuel cost of generators with the
valve-point effects that appears in a rectified sinusoidal function introduce ripples in the
heat- rate curves, that’s a function in the generator real power output, which are defined
as:
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The objective function (2) is subjected to the following constraints:
a)  Equality constraints
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 Power balance constraint
The generators real power output should be equal to the total load demand and

transmission line losses as:
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The power loss is expressed using the B’s coefficient as [11]:
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Where, Pi and Pj are the injected powers at buses i and j, respectively.
b)  Inequality constraints
 The generator real power output must be within the feasible limits as:

maxmin
iii PGPGPG    (5)

 Power flow constraints
The power flow in each transmission line k must be less than the maximum

permissible power flow in the line k as:
m ax

,k k i i kPF D PG PF  (6)

3. ACO algorithm:

ACO algorithms were proposed by Dorigo [12-14]. A brief description of the ACO is
presented as follows:

3.1. Description of real ants:

ACO algorithms are based on the behavior of real ants that are members of a family of
social insects. However, a group of explorer ants leave the colony for finding the food
source in a randomly directions where they marked their routes by laying a chemical
substance on the ground. Other ants attractive to the route that has the largest amount of
pheromone that decays with time. So that, a shorter route will be found that has a largest
amount of pheromone than a longer route. Hence, they are found the shortest route
between the nest and food source by indirect communication media that called
pheromone that laid on the ground as a guide for another ants. Fig. 1 shows how the real
ants can find the shortest path between nest or colony and food source. In Fig. 1(a),
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there are no obstacles between nest and food source. However, the shortest route is the
straight line. If an obstacle is located on the route of ants to become two routes around
the obstacle, some of ants choose the left side around the obstacle and the other will
choose the right side as shown in Fig. 1(b). The pheromone laid on the left side will be
concentrated than right side of obstacle because ants in the shortest path takes minimum
time in leaving and returning for nest where they moves in the same speed. So, they will
be laid a largest amount of pheromone than other ants on the other route. While, the
other ants attractive to the shortest route. Hence, all ants in the colony will take the
shortest route around the obstacle as shown in Fig. 1(c).

 a. b. c.

Figure (1): Illustration of real ants behaviour

3.2. Mathematical model of ACO algorithm:

A random amount of pheromone is deposited in each rout after each ant completes its
tour, anther antes attract to the shortest route according to the probabilistic transition
rule that depends on the amount of pheromone deposited and a heuristic guide function
as equal to the inverse of the distance between beginning and ending of each route. The
probabilistic transition rule of ant k to go from city i to city j can be expressed as in
Traveling Salesman Problem (TSP) [14] as:
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If α=0, the closest cities are more likely to be selected that corresponding to a classical
greedy algorithm. On the contrary, if β=0, the probability will be depend on the
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pheromone trial only. These two parameters should be tuned with each other, Dorigo in
[12] found experimentally the good values of α and β are 1 and 5, respectively, q is the
cities that will be visited after city i. While, Nr

k is a tabu list in memory of ant that
recodes the cities are visited to avoid stagnations. After each tour is completed, a local
pheromone update is determined by each ant depending on the route of each ant as in
Equation (8). After all ants attractive to the shortest route, a global pheromone update is
considered to show the influence of the new addition deposits by the other ants that
attractive to the best tour as shown in Equation (9).

    )(1)1( tt ijij                                                                          (8)

  )()(1)1( ttt ijijij                                                                            (9)

the amount of pheromone for elite path can be calculated as:

bestij dt /1)(              (10)

4. ACO algorithm for SCOD problem:

ACO algorithm is applied to solve the SCOD problem as an optimization technique with
equality and inequality constraints where artificial ants travels in search space to find
the shortest route that having the strongest pheromone trail and a minimum cost
function. The SCOD aims at minimizing the total cost of generation real output power
(2) with equality and inequality constraints (Equations (3) - (6)). So, a heuristic guide
function is the inverse of the individual cost of each ant that positioned in the reasonable
limit of the control variable to the visibility of each ant. While, heuristic guide function
of the problem is the inverse of the total costs at iteration t+1 as:
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In GA, a chromosome is subdivided into genes, each gene represents a variable, consists
of a binary string with length that depends on the boundary of the corresponding
variable.
In ACO algorithm, a search space creates with dimensions of stages on number of
control variables and states or the randomly distributed values of control variables with
in a reasonable threshold. Artificial ant's leaves colony to search randomly in the search
space based on the probability in (7) to complete a tour matrix that consists of the
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positions of ants with the same dimension of the search space. Then, tour matrix is
applied on the objective function to find a heuristic guide function to find the best
solution and update local and global pheromone to begin a next iteration. System
parameters are adjusted by trail and error to find the best values of theses parameters.

The ACO algorithm can be applied to solve the SCOD problem using the following
steps:

Step 1: Initialization
Insert the lower and upper boundaries of each control variable (PG min, PG max), system
parameters and create a search space with a dimensions of number of control variables
(PG) and the length of randomly distributed values with the same dimension of the
initial pheromone that contains elements with very small equal values to give all ants
with the same chance of searching.

Step 2: Provide first position
Each ant is positioned on the initial state randomly with in the reasonable range of each
control variable in a search space with one ant in each control variable in the length of
randomly distributed values.

Step 3: Transition rule
Each ant decide to visit a next position in the range of other control variables according
to the probability transition rule in Equation (7) that depends on the amount of
pheromone deposited and the visibility that is the inverse of objective function (11).
Where, the effect of pheromone and visibility on each other depends on the two
parameters α and β.

Step 4: Local pheromone updating
Local updating pheromone is different from ant to other because each ant takes a
different route. The initial pheromone of each ant is locally updated as in equation (8).

Step 5: Fitness function
After all ants attractive to the shortest path that having a strongest pheromone, the best
solution of the objective function is obtained.

Step 6: Global pheromone updating
Amount of pheromone on the best tour becomes the strongest due to attractive of ants
for this path. Moreover, the pheromone on the other paths is evaporated in time.



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE141 - 8

Step 7: Program termination
The program will be terminated when the maximum iteration is reached or the best
solution is obtained without the ants stagnations.

5. Applications:

5.1. Test systems:

Three standard test systems and a real power system are used to study the proposed
technique for SCOD using an ACO algorithm. These standard systems are 5-bus [15],
IEEE 14-bus and IEEE 30-bus test systems [16]. The 5-bus system has three generator
units at buses 1, 2 and 5. The IEEE 14 bus system has two generators at buses 1 and 2. It
is considered the first lines of the standard systems as most critical lines of these
systems. The maximum permissible power flows of these critical lines are equal to 45,
150 and 65 MW for 5-bus, 14-bus and 30 bus test systems, respectively. However the
power flows of other lines in the three systems are preserved within their security limits.
An application to a real power system at the West Delta Network (WDN) is a part of the
Unified Egyptian Network (UEN) [17] as shown in Fig. 2.
The results that obtained are compared with those obtained using conventional
optimization techniques namely linear programming (LP), fuzzy linear programming
(FLP) and genetic algorithm (GA) techniques [15]. The best values of ACO algorithm
parameters are α =1, β=8, ρ=0.5 and ε=5 .

Two different operation conditions are considered to obtain the SCOD, which are
normal and emergency conditions.
The emergency conditions that may occur in the three test systems are:

a) Sudden increase in load demand.
b) Unexpected outage of one line.
c) Unexpected outage of units inside the generation plant.

5.2. Results and comments:

The results are obtained using ACO algorithm that processed using MatLab code
version 7.1 that setup on a Pentium 4, 3.0 GHz PC, 0.99 GB of ram.

5.2.1. Normal conditions:
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Tables 1, 2 and 3 shows a comparison between the results obtained using ACO
algorithm and the previous results using conventional LP, the FLP and GA [14]. In
theses tables, the ACO algorithm has the minimum generation cost compared with other
techniques.
Table 4 shows a comparison between the results obtained using ACO algorithm and the
results using conventional LP, the FLP and GA for WDN system with valve-point
effects are taken into account. In this table, the ACO algorithm has the lowest
generation cost compared with other optimization techniques. The computation time
using ACO algorithm dependent on the system size and related to the number of control
variables in Tables 1-4, the computation time is 2.1, 2.25, 2.28 and 2.344 corresponding
to 14, 5, 30 and WDN systems that have 2, 3, 6 and 8 number of control variables,
respectively.

Table (1): Comparison of various optimization methods for5-bus system (load=185 MW)

Variable LP FLP GA ACO
PG1 90.2 78.9 90.2 90.15
PG2 34.8 61.7 35.8 35.17
PG5 60 44.4 59 59.68
PF1 45 34.6 44.98 44.94

Cost ($/hr) 380.7 391.7 374.1 373.8
Time (Sec.) 0.55 0.66 0.99 2.25

Table (2): Comparison of various optimization methods for14-bus system (load=260 MW)

Variable LP FLP GA ACO
PG1 208.1 196.8 208.1 208.01
PG2 51.86 63.2 51.9 51.99
PF1 150 140.4 149.96 149.92

Cost ($/hr) 958.1 961.4 767.5 763.4
Time (Sec.) 0.5 0.72 1.1 2.1

Table (3): Comparison of various optimization methods for30-bus system (load=220 MW)
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Variable LP FLP GA ACO
PG1 10 52 49.1 59.73
PG2 80 62.3 65.6 55.89
PG3 39.4 28.9 21 40.81
PG4 10 16 23.7 17.5
PG5 30 25.5 16.5 27.12
PG6 50.6 35.3 44.1 18.95
PF1 -0.251 30.94 28.07 37.75

Cost ($/hr) 871.93 879.22 685.13 654.9
Time (Sec.) 0.6 1.1 1.75 2.28

Table (4): Comparison of various optimization methods for WDN system (load=890 MW)

Variable LP    FLP       GA     ACO
PG1 10 107.6704 70 62.218
PG2 10 123.2776 84.5 90.853
PG3 10 116.9019 81.2 83.74
PG4 250 104.6504 130.1 131.68
PG5 339.75 140.9867 192.5 170.08
PG6 250 74.3218 220.1 221.91
PG7 10 104.6519 56.2 66.42
PG8 10 117.2894 55.3 63.026
PF34 32.417 12.88 18.192 4.325
PF40 46.248 26.636 46.603 12.522
PF50 4.5307 12.535 9.1532 16.665
PF76 15.734 12.298 14.918 16.745

    Cost ($/hr) 3149.3 3890.4 2909.8 2903.9
 Time (Sec.) 0.375 0.594 2.937 2.344
 Where, the maximum power flow in lines 34, 40, 50 and 76 are

200, 150, 200 and 200 MW, respectively.

5.2.2. Emergency conditions:



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE141 - 11

 Sudden increase in the load demand:

Tables 5 and 6 show the SCOD using the ACO algorithm for different loading
conditions for the 5- bus and 14- bus test systems. In these tables, the power flows in the
critical lines are kept within their limits, and the generation costs are increased
according to the increasing of the load demand.

Table (5): SCOD solution using ACO algorithm for different loading conditions for 5-
bus system

Load (MW)
   Variable 150 170 185 200 220 230

PG1 82.74 86.87 90.15 92.36 92.63 93.06
PG2 14.51 27.93 35.17 49.76 69.83 79.67
PG3 52.75 55.2 59.68 57.88 57.54 57.27
PF1 44.83 44.86 44.94 43.92 40.397 38.88

Cost ($/hr ) 295.12 340.01   373.8 409.626 460.24 485.92

Table (6): SCOD solution using ACO algorithm for different loading conditions for 14-
bus system

Load (MW) 220 240 260 270 280 285
PG1 203.47 206.31 208.01 209.13 210.84 210.74
PG2 16.53 33.69 51.99 60.87 69.16 74.26
PF1 149.1 149.52 149.92 149.94 149.97 149.98

Cost ($/hr ) 615.75 689.06 763.4 807.98 850.3 872.53

Table 7 shows a comparison between the results obtained using ACO algorithm and GA
for a WDN system for different loading conditions. In this table, the ACO algorithm has
the minimum generation cost compared with GA.

Table (7): SCOD solution using ACO algorithm and GA for different loading conditions
for the WDN system
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Load(MW) 700 800 890 1000 1100
Algorithm GA ACO GA ACO GA ACO GA ACO GA ACO

PG1 70 55.56 70 59.73 70 62.22 75.6 72.17 83.1 84.6
PG2 69.9 71.79 88.5 82.19 84.5 90.85 130 106.3 130 125.51
PG3 73.3 72.68 70 76.37 81.2 83.74 113.8 94.80 114.9 114.71
PG4 100 106.99 100 124.98 130.1 131.68 129.9 137.98 160.2 159.5
PG5 101.2 101.6 161.7 146.11 192.5 170.08 186.6 189.77 197 198
PG6 197.5 201.19 210.6 213.43 220.1 221.91 220 241.62 249.8 249.88
PG7 40 39.13 40 51.70 56.2 66.42 69.3 77.46 82.8 83.15
PG8 48.1 50.97 59.1 45.41 55.3 63.03 74.8 79.83 82.2 84.58
PF34 9.44 9.53  15.22 13.74    18.19 15.98 17.45 17.81 18.41 18.52
PF40 42.04 42.06 43.87 44.79 46.6 47.38 48.98 52.16 55.32 55.31
PF50 2.87 5.08  6.26 5.73  9.15 7.15 8.85 8.52 9.58 9.66
PF76 8.97 10.41 11.71 11.92 14.92 13.25 14.11 14.76  15.90 16.02

Cost($/hr) 2173 2169.3 2549.1 2544.6 2909.8 2903.9 3367.9 3365 3799.4  3798.9
   Time(Sec.) 3.063 2.219 2.891 2.266 2.937 2.344 2.922 2.343 3.031 3.462

 Unexpected outage of transmission line:

Tables 8 and 9 show the SCOD computed using the ACO algorithm for different lines
outage compared with the load flow (LF) using the Newton-Raphson method for 5-bus
and 14-bus test systems. In these tables, overflows in the critical lines are removed
using the ACO algorithm.

Table (8): SCOD solution for different line outage for 5-bus system (load=185 MW)

Outage
Line 1 Line 2 Line 6Variables

LF ACO LF ACO LF ACO
PG1 90.15 59.98 90.15 59.89 90.15 85.61
PG2 35.17 69.10 35.17 69.24 35.17 40.12
PG3 59.68 55.92 59.68 55.87 59.68 59.27
PF1 Outage 77.15* 44.78 49.46* 44.23
PF2 73.557* 44.735 Outage 31.65 26.35

* Denotes an overflow in transmission line, Where, the PF2
max is 45 MW

Table (9): SCOD solution for different line outage for 14-bus system (load=260 MW)
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Line Outage 7 6 10
Algorithm LF ACO LF ACO LF ACO

PG1 208.01 185.63 208.01 203.45 208.01 204.28
PG2 51.99 74.37 51.99 56.55 51.99 55.72
PF1 166.49* 149.38 151.99* 148.46 151.45* 149.41
PF7 Outage 47.016 28.204 98.379 94.251

* Denotes an overflow in transmission line Where, Where, the PF7
max is 100 MW

Figure (2): Single line diagram of the WDN system
Table 10 shows the SCOD computed using the ACO algorithm for different lines outage
compared with the load flow (LF) using the Newton-Raphson method for WDN system.
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The power flows in all lines are kept within their permissible limits.

Table (10): SCOD solution for different line outage for WDN system (load=890 MW)

Line Outage 34 40 50
Technique LF ACO LF ACO LF ACO

PG1 62.22 64.56 62.22 63.32 62.22 64.97
PG2 90.85 91.08 90.85 90.98 90.85 91.18
PG3 83.74 84.21 83.74 85.081 83.74 85.82
PG4 131.68 131.5 131.68 131.8 131.68 132.1
PG5 170.08 174.28 170.08 175.99 170.08 174.28
PG6 221.91 224.71 221.91 223.77 221.91 221.88
PG7 66.42 63.92 66.42 65.23 66.42 64.92
PG8 63.03 55.67 63.03 53.764 63.03 54.78
PF34 Outage 79.49 16.23 82.23 16.41
PF40 40.74 47.21 Outage 38.9 47.44
PF50 22.83 6.66 19.692 3.83 Outage
PF76 5.384 13.015 5.387 13.02 5.38 13.01

 Where,
PF34

max, PF40
max, PF50

max and PF76
max are 200, 150, 200 and 200 MW, respectively

 Unexpected outage of some units inside the generation plant:

Figures 3 and 4 show the SCOD using ACO algorithm for different percentage outage
of generation plants 1 and 3 for the 5-bus test system. From these figures, the power
generation at bus 2 (PG2) is increased largely according to an increase in the percentage
outage of power generations 1 and 3. While, the power generations at buses 3 (PG3) and
1 (PG1) are increased smallly according to an increase in the percentage outage of power
generations 1 and 3, respectively shown in Figures 3(a) and 4(a), as well as the
generation costs are increased shown in Figures 3(b) and 4(b).

Figure 5 shows the SCOD using ACO algorithm for different percentage outage of
generation plant 5 for the WDN system. From this figure, the power generation at other
generation buses is increased according to an increase in the percentage outage of power
generations 5, as well as the generation costs are increased.
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3. b) Variation of generation cost

Figure (3): The SCOD using ACO algorithm for different percentages outage of power
generation 1 for 5-bus system
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4. b) Variation of generation cost

Figure (4): The SCOD using ACO algorithm for different percentages outage of power
generation 3 for 5-bus system
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5. b) Variation of generation cost

Figure (5): The SCOD using ACO algorithm for different percentages outage of power
generation 5 for WDN system
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6. Conclusions:

This paper presents an approach based on ACO algorithm to solve the problem of
SCOD with equality and inequality constraints under normal and emergency conditions.
The proposed algorithm has been tested on a three test systems and real actual system is
the WDN system as a part of the Unified Egyptian Network (UEN), the results obtained
are compared with other conventional LP, FLP and GA. The results show that, ACO
algorithm leads to minimum generation costs for normal condition, while all the power
flows in the critical lines are kept within their permissible limits. So, the proposed ACO
algorithm gives more accurate and efficiently solution to remove the insecure operation
at different emergency conditions. Therefore, the proposed algorithm represents a
potential tool to aid the power system operators in the on-line environment.
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Nomenclatures:

Ft

ai, bi and ci

ei and fi

NG
PGi

PDj

NL
Plosses

PGi
max

PGi
min

PFk

PFk
max

The non-linear objective function of power generation cost Rotor speed
The coefficients of power generation cost function Conductance
The fuel cost coefficients of the ith unit with valve-points effects
The number of generation buses
The power generation at bus i
The load demand at load bus j
The number of load buses
The total power losses in the system
The maximum limit of power generation at bus i
The minimum limit of power generation at bus i
The power flow in line k
The maximum power flow in line k

www.ee.washington.edu/research/pstca/
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Dk,i

τij

ηij

α and β

Nr
k

ρ
ε

d bes

The distribution parameters of the power flows related to the power
generations
The pheromone trail deposited between city  i and j
The visibility or sight and equal to the inverse of the distance or the
transition cost between city i and j ( ηij = 1/dij )
Two parameters that influence the relative weight of pheromone trail
and heuristic guide function, respectively
A tabu list in memory of ant that recodes the cities are visited to avoid
stagnations
The pheromone evaporation constant
The elite path weighting constant
The shortest tour distance found as in TSP


