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Abstract:

Session Initiation Protocol (SIP) is vulnerable to a wide variety of Denial of Service
(DoS) attacks, flooding is the most common, effective and the easiest to generate one.
In this paper we present an evaluation study to four well-known anomaly detection
algorithms, namely: Adaptive Threshold, Cumulative sum (CUSUM), Non
Parametric Cumulative Sum (NP-CUSUM), and Hellinger Distance (HD). The
evaluation is assisted using simulated traffic dataset. We show that these algorithms
suffer from two main problems, the first is called attack masking and the second is
adaptation with attack. In the attack masking, attacker sends preamble followed by
the attack. The preamble changes the tuned parameters of the detection algorithm,
these changes mask the attack and keep it undetected. Attacker in the second problem
deviates the detection algorithm parameters gradually, in such a way the attack is
considered as normal traffic. The paper also shows that NP-CUSUM and HD
algorithms, which utilize the protocol behavior to detect intrusion, suffer from third
problem, and they are very simple to con. Attacker simply follows the same protocol
behavior, and its related traffic is considered as normal, and cannot be detected.

Keywords: session initiation protocol; flooding attacks; denial of service; anomaly
detection; Adaptive Threshold; cumulative sum; non parametric cumulative sum;
Hellinger distance.
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1. Introduction:

Transferring Voice over Internet Protocol (VoIP) is a new promising technology, due
to its simplicity, flexibility and low cost compared to traditional public switched
telephone network, however its security is still the greatest challenge, and being a real
time service, Denial of Service (DoS) attacks are the more effective ones. The
Session Initiation Protocol (SIP) has become the main signaling protocol for
multimedia sessions in the Internet and IP telephony, and it has been very successful
in recent years [1]. SIP servers are vulnerable to a wide variety of DoS attacks;
authors in [2] classify them into three different classes, namely: Message Flows
Attacks, Malformed Message Attacks, and the Flooding Attacks which is the
common, affective and the easiest one [3]. In SIP flooding attacks, the attacker
generates a large numbers of SIP requests, the SIP server receives the requests and
maintains a transactional state for each one until the transaction completes or the
transaction times out. The system is kept busy treating these requests, and the overall
performance of the SIP server will decay. On the other hand, Intrusion Detection
System (IDS) is a security system that monitors traffic and analyzes that traffic for
possible hostile attacks. According to the analyzing method, IDS is classified into
Misuse Detection Systems and Anomaly Detection Systems. Misuse detection
approaches attempt to model attacks on a system as specific patterns, and then
systematically scan the system for occurrences of these patterns. By contrast,
anomaly detection approaches attempt to detect intrusions by noting significant
departures from a normal behaviour [4]. Most of flooding attacks detection systems
are anomaly based, their normal traffic models are mainly based on flow rates [3],
Adaptive Threshold and Cumulative Sum (CUSUM) are the two common detection
algorithms which belong to this category, they were used in [5] to detect SYN
flooding, and in [6] to detect SIP flooding attacks. The other DoS detecting systems
utilize the normal protocol behavior, Non-parametric Cumulative Sum (NP-
CUSUM), and Hellinger Distance (HD) are two behavior-dependent detection
algorithms, they were used in [3,7] and  [4] respectively to detect SYN flooding,
while they were used in [8] and [9] to detect SIP flooding attacks. Work which was
done in [6] shows that HD is able to detected different types of SIP flooding attacks
accurately, whereas the Adaptive Threshold and the Cumulative Sum cannot
optimally detect different types of SIP flooding attacks using the same set of
parameters value. Non-parametric Cumulative Sum also was investigated in [8] and
considered as high detection accuracy and low complexity algorithm. We believe that
the investigations which were done on these algorithms are not enough, especially
when SIP flooding attacks spread over a wide range of request rates. In this paper we
present a deeper analysis for them, identifying critical weak points for each one. In
the following study, to make sure the wide range of SIP flooding attacks is
considered, we classify the flooding attacks into three types: the first is the lower rate
at which attack begins to make effect on server performance, it is called Low Rate
Attack (LRA), while the second is the rate who guarantees maximum effect in
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shortest attack time and called High Rate Attack (HRA), and the third is the Medium
Rate Attack (MRA) which mediates these two types. The rest of this paper is
organized into 5 sections. Sections 2-5 present a detailed description for the four
mentioned detection algorithms along with the problems associated with each one,
while section 6 is the conclusion and the proposals future work.

2. Adaptive Threshold algorithm:

Adaptive Threshold Algorithm relies on testing whether the average of a given
feature in a predefined time window exceeds a particular threshold.  If Xn is the value
of the feature in the nth time interval, and µn-1 is the average estimated feature from
measurements prior to n, then the alarm condition is given by:

If Xn>(α +1) µn-1 then ALARM is signaled at time n. (1)
α > 0 is the amplitude factor; that indicates the percentage above the mean value that
we consider to be an indication of anomalous behavior. µn can be computed using an
Exponentially Weighted Moving Average (EWMA) of previous measurements.

µn=β µn-1+(1-β) Xn where β is the EWMA factor. (2)
Direct application of the above algorithm would yield a large number of false alarms.
A simple modification that can improve its performance is to signal an alarm after a
minimum number of consecutive violations of the threshold. Adaptive Threshold is
applied to detect the SIP flooding attacks by monitoring the rate of SIP requests. Its
performance varies significantly with the variation in attack metrics. Previous work
on SIP flooding attacks [5,6] shows that Adaptive Threshold algorithm detects high
rate attacks relatively accurately with fewer false alarms than that of low rate attacks.
Also Adaptive Threshold algorithm performs better for short period attacks as
compared to long period ones. The next two subsections show that Adaptive
Threshold has two main problems, we call them attack masking and adaptation with
attack problems.

2.1. Adaptive Threshold and attack masking problem:

The masking phenomena is related to the capability of attacker to block the server
with a preamble of large rate of requests, these intrusive requests can be detected, but
its main aim is to raise the detection threshold, creating the opportunity for attacker to
inject another lower rate of requests that are not detected by IDS. The Adaptive
Threshold alarm condition is given by the inequality (1), so if we raise the threshold
where the following condition remains satisfied, the attack will be undetectable.

XAttack≤(α +1) µn-1 where XAttack is the attack rate
From the equation (2), the difference between µn-1 and µn is given as:

µn- µn-1= (1-β)( Xn- µn-1)
If (Xn>µn-1) the threshold is increased. Attacker now begins to send mask requests
(Xmask) where (Xmask>µn-1), and continues sending the mask requests tell the following
condition is satisfied:
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µn-1≥ (3)

It is save now for an attacker to send undetected attack XAttack. Attacker continues
attacking the server for any period of time, and the threshold remains high. Figure (1)
demonstrates the Adaptive Threshold attack masking problem; it shows how MRA is
used to mask LRA.
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Figure (1): Adaptive Threshold and attack masking problem

Higher rate attacks raise the threshold faster than lower rate ones. Attackers try to use
high rate attacks for short duration as masks. The EWMA (β) factor determines how
much the current sample request rate affects the next estimated mean request rate.
Large β means less current rate effect on the next estimated rate, (see equation (2)),
and then the attacker needs larger mask volume to raise the threshold. On the other
hand, the raised threshold takes longer time to adapt with the next normal request
rate, thus attacker can leave more time between the mask and the attack. The
amplitude factor α also has a significant effect on the masking phenomena, inequality
(3) shows that as α increased as the masking condition satisfied earlier for a given
“hidden” attack rate XAttack.

2.2. Adaptive Threshold and adaptation with attack problem:

Attacker is not restricted to make a sudden change in the detection threshold. Let us
suppose that attacker sends XAttack requests rate which satisfy the following condition:

XAttack = (α+1) µn

According to inequality (1), XAttack is considered as normal request rate. The next
estimated mean request rate is given as:

µn+1=β µn+(1-β) XAttack

µn+1=β µn+(1-β) (α+1) µn

µn+1=µn+ α (1-β)µn (4)
We have 0 < α, β <1, and then according to equation (4) we have µn+1>µn. The
attacker succeeds to raise the mean requests and thereby the detection threshold is
raised too. Repeating this scenario raises the detection threshold up to unlimited
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bound, causing the attack to pass without any noticeable trace. Since attacker raises
the request rate up to (α+1) µn periodically, both α and β will have significant effect
on the attacking process. It is clear that large α values permit large volume of XAttack,
and then the attack request rate grow rapidly. The EWMA (β) factor has the opposite
effect; large β means less current rate effect on the next estimated rate, so XAttack

could be increased by small amount, and then the attack request rate grows slowly.
Figure (2-A) shows how attacker raises the detection threshold in such a way that
MRA becomes undetectable. Attacker who cannot estimate the µn and α may simplify
the problem and begins his attack by very low rate, then increases it periodically also
by very low request rate too, such a way µn increased and thereby threshold increased
too.  In Figure (2-B) attacker begins his attack only by ten requests per second, then
increases it gradually one percent from previous request rate (or one request at least).
Figure shows that attacker after a few minutes can pass MRA without any noticeable
trace. Here α and β will not have any effect since attacker independently increase his
request rate by very small amount of requests. Adaptation with attack will be
satisfied, but after longer time other than previous one.
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Figure (2): Adaptive Threshold and adaptation with attack problem

3. Cumulative Sum algorithm:

The CUSUM algorithm belongs to the family of change point detection algorithms
that are based on hypothesis testing [10]. It detects the abnormality much faster than
the Adaptive Threshold algorithm [11].The choice of CUSUM is based on its
simplicity in computation as well as its generally excellent performance [7].
CUSUM was developed for independent and identically distributed random variables
{xi}. According to the approach, there are two hypothesis θ0 and θ1, where the first
corresponds to the statistical distribution prior to a change and the second to the
distribution after a change. The test for signaling a change is based on the log-
likelihood ratio Sn

Sn= i where si= ln

(A) (B)
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The typical behavior of the log-likelihood ratio Sn includes a negative drift before a
change and a positive drift after the change. Therefore, the relevant information for
detecting a change lies in the difference between the value of the log-likelihood ratio
and its current minimum value. Hence the alarm condition for the CUSUM algorithm
takes the following form:

If gn ≥ h then an alarm is signaled at time n,
Where: gn = Sn − mn and mn = min1≤j≤n Sj , and the parameter h is the threshold.

Applying CUSUM algorithm to detect SIP flooding attack was done in [6]. It was
assumed that {xn} are independent Gaussian random variables which represent the
SIP requests rates in consecutive time intervals. xn has known variance σ2, which is
assumed to remain the same after the change, and μ0 and μ1 are the means before and
after the change, respectively. According to [6] gn can be formed as:

gn= [gn-1+ (xn- µn-1-
+ (5)

Where [x]+ is equal to x if x>0 and 0 otherwise, xn is the SIP request rate in the nth

time interval, α is the amplitude percentage parameter, and n is an estimate mean for
SIP request rate at time n, which is computed using the EWMA as follow:

µn=β µn-1+(1-β) xn (6)
Experimental work which was done in [6] shows that CUSUM has better
performance with respect to low rate attacks as compared to high rate attacks. In all
cases, CUSUM algorithm, similar to the Adaptive Threshold algorithm, has attack
masking and adaptation with attack problems, as will be shown shortly.

3.1. CUSUM and attack masking problem:

Suppose that previous SIP requests are normal, by referring to equation (5) we note
that the current attack rate is considered as normal one if the following condition is
satisfied:

(xn- µn-1- ≤ 0

But ≥ 0, then  (xn- µn-1- ≤ 0

xn ≤  * µn-1 (7)

Attacker who plans to mask attack with xAttack request, must increases the mean

request µ up to *xAttack then sends his flooding requests. As said befor, two attacks

are used, the first is the preamble, which is used to  incrase the mean request rate, and
the second is the intended hidden attack. Figure (3) shows how HRA can be used to
mask MRA.
The effect of β is similar to that ones in Adaptive Threshold masking problem. The
amplitude factor α also has a significant effect on the masking phenomena, inequality
(7) shows that as α increased as the masking condition satisfied earlier for a given
“hidden” attack rate XAttack.
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Figure (3): CUSUM and attack masking problem

3.2. CUSUM and adaptation with attack problem:

Clever Attacker may keep himself completely undetectable. According to inequality

(7) the requests xn may be increased up to  * µn-1 and considered as normal.

According to equation (6), increasing xn increases the µn, but increasing µn in turn
adds the opportunity to increases the normal xn+1, and so on; the request rate is
increased gradually and the CUSUM algorithm has not any indication about this new
state. CUSUM algorithm adapts himself for each new increased request rate, and thus
the attack remains undetectable. Figure (4-A) demonstrates how the CUSUM
algorithm is not able to detect the gradually increased MRA, while it simply detects
the fixed rate one. Again, as we had seen for the Adaptive Threshold, Attacker may
begins his attack by very low request rate, then increases it periodically also by very
low request rate. In Figure (4-B) attacker begins his attack request only by ten
requests per second, then he increases it gradually one percent from previous request
rate (or one request at least), Adaptation with attack satisfied but after longer lime.
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4. Non Parametric Cumulative Sum algorithm:

NP-CUSUM is used to detect DoS attacks when it is not possible to model the total
number of session request arrivals by a simple parametric description. NP-CUSUM
detection mechanism belongs to change point detection algorithms and based on
protocol behavior [3,12]. It was used in [8] to detect SIP flooding attack relaying on
the SIP request/response pairs relations. Analysis which was done on SIP server
traffics shows that difference in number between INVITE/BYE and 200OK/ACK
pairs does not vary too much with the change of time, and have a strong correlation
[4,8]. Any deviation from this kind of correlation is considered as an indication of
DoS attacks; that is the key idea of NP-CUSUM.
Suppose X is the number of INVITE minus BYE requests. Value of µ is the average
number of X. µ can be estimated in real time and updated periodically in the same
way we had seen in Adaptive Threshold and CUSUM algorithms, according to the
following equation:

µn = β µn-1 + (1− β) Xn (8), where β is the EWMA factor.
Let {Xn ,n = 0,1,...} be the number of INVITE minus that of the corresponding BYE,
Xn is dependent on the number of the calls, it may also vary with time. In order to
alleviate these dependencies, Xn is normalized by the average number µ, during the
sampling period. Define Zn= Xn / µn , value of Zn is no longer dependent on the
network size or time-of-day. Let E(Zn)= c. We choose a parameter that is the upper
bound of c, i.e. a >c and define n =Zn – a, so it has a negative mean during normal
operation. When an attack takes place, n will suddenly become positive.
Let yn=[yn-1 + n]

+ (9)
y0=0;

Where [x]+ is equal to x if x > 0, and 0 otherwise. Large yn is a strong indication of an
attack. IDS developer may apply the same detection process for 200OK/ACK pair,
then it can be used as standalone flooding attack indication, or it may be combined
with INVITE/BYE detection to make a robust decision.

4.1. NP-CUSUM and attack masking problem:

NP-CUSUM considers the current SIP request sample as normal one if (Xn / µn) is
small enough, and does not exceed the upper bound of its expected value (a). In
normal traffic this value is small since the difference between INVITE and BYE rate
is small. Attacker, also, may preserve it small if he succeeds to enlarge the estimated
difference (µn). Equation (8) indicates that one way to enlarge µn is to enlarge Xn, but
this considered as attack, equation (8) also indicates that β amount of the current
raised µn will be preserved in the next estimated one, and then µ is preserved large for
the next few samples. Consequently, attacker sends some flooding requests as
preamble to raise µn, this raised µn gives the attacker adequate time to send
undetected flooding attack, as seen Figure (5).
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Figure (5): NP-CUSUM and attack masking problem

4.2. NP-CUSUM and adaptation with attack problem:

Let us suppose that Inviten, Byen are the numbers of INVITE and BYE requests
consequently at instant n, and the previous requests are normal, so according to
equation (9), the current requests will be considered normal if:

n≤0
(xn / µn) - a ≤0

((Inviten-Byen) / µn) ≤ a
Inviten ≤ Byen + µn * a (10)

So, the attacker can increase the current Invite requests up to (Byen + µn * a) and
considered as normal request. From equation (8) we realize that µn+1 will be increased
too, and then the next INVITE request rate (Inviten+1) can safely be increased up to
Byen+1+µn+1*a. Attacker repeats this scenario and gradually increases the INVITE
request rate, whereas the NP-CUSUM algorithm modifies his estimated difference to
be adapted with the new situation. Attacker may decide to increase the request rate
up to upper limit then continue sending a fixed rate of flooding requests. Figure (6-A)
illustrates this case. Figure (6-B) shows simple gradually increased attack, where
attacker begins his attack request only by fifty INVITE requests per second, then he
increases it gradually two percent each time.

4.3. NP-CUSUM and request balancing problem:

NP-CUSUM algorithm suffer another fatal bug, attacker can con the algorithm.
According to the inequality (10), the sample n is considered as normal if the
following condition is satisfied:

Byen ≥ Inviten - a * µn

Thus attacker can send any arbitrary number of INVITE requests then balances them
by sending BYE requests which satisfy the inequality, and the attack remains
undetected. Simply, attacker may sends the same number of INVITE and BYE
requests simultaneously to remain undetected.
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Figure (6): NP-CUSUM and adaptation with attack problem

5. Hellinger Distance:

HD measures the deviation between probability measures that does not make any
assumptions about the distributions themselves. To explain, let P and Q be two
probability distributions on a finite sample space Ω, where P and Q on Ω are N-
tuples ( , , ..., ) and ( , , ..., ) respectively, satisfying inequalities ≥0,

≥0, =1 , =1, Then, the HD between P and Q is defined as [9]:

(P,Q) = 2

Sometimes, the factor 1/2 is not used. The HD satisfies the inequality
and =0 when P=Q. Disjoint P and Q shows the maximum distance of

1if factor  is omitted, if the observed HD is greater than a predefined threshold value

then an alarm is raised. Authors of [9] had use HD to detect anomalies in SIP
protocol. They took four attributes of SIP which are the number of INVITE, 200 OK,
ACK and BYE messages arrived in a predefined time-window. The algorithm
consists of training and testing phases. In the training phase, the normalized
frequencies pINVITE, p200OK, pACK, pBYE for INVITE, 200OK, ACK and BYE
respectively are calculated over the training dataset. Similarly, the normalized
frequencies qINVITE, q200OK, qACK, qBYE are calculated in the testing phase for each time
window n. The HD between these frequency distributions of two phases is:

HD = 2+ 2

+ 2+ 2

To keep track of the normal attribute behaviors, authors in [9] and [6] use a dynamic
threshold for detection. The threshold value is a function of the average of observed
HDs and their mean deviation. Such a dynamic setting of threshold makes an attack

(A) (B)
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harder to evade. They employ the stochastic gradient algorithm to compute the
dynamic threshold based on the HD observed during the previous training period.
Fast estimators for average α and mean deviation ν, given measurement HD, are
computed as:

Let Err = HDn – α n-1 (11)
α n = α n-1+ g*Err (12)

νn= νn-1 + h*(|Err| − νn-1)  (13)
where HDn is the HD for the current sample, α n-1and α n are the previous and current
estimated average HD, respectively, νn-1 and νn represent the previous and current
mean deviations, g and h are chosen to be negative exponents of 2.
The estimated average HD (α n) is based on the observed HD, which is measured
between the probability measures P and Q. During the testing periods, the Threshold
(TH) is estimated using the estimated average HD (equation 12) and the mean
deviation (equation 13).

THn= x* α n+ y* νn (14)
The purpose of the multiplication factors x and y is to get a safe margin for the setting
of the threshold value, so that HD avoids false alarms without degrading its detection
sensitivity. These two factors are adjustable parameters, and can be properly tuned
during the training period. The test which was done in [6,9] shows that HD is more
accurate and has fewer false alarms, in detecting high rate attacks more than low rate
ones. Here, we limit our study to two common requests, which are INVITE and BYE.
This restriction will not affect the essence of HD, since it is a simple polynomial of
positive values. Suppose there are NINVITE, NBYE of INVITE and BYE requests
respectively, during the training period then the normalized frequency of pINVITE and
pBYE over the training data set are defined as follows:

pINVITE = pBYE =

Also, suppose that there are MINVITE, MBYE of INVITE and BYE requests
respectively, during the testing period, then the normalized frequency of qINVITE and
qBYE over the testing data set are defined as follows:

qINVITE = qBYE =

The HD between the normalized frequencies of the training and testing data set is
computed as follows:

HD = 2+ 2

In the following we will show that HD suffers from attack masking, adaptation with
attack, and request balancing problems.

5.1. HD and the attack masking problem:

HD has the attack masking problem; to explain it we rearrange the previously defined
equations. By merging equation (11) and equation (12), αn is expressed as:

α n = (1-g) α n-1+ g * HDn (15)
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Equation (15) shows that (1-g) of the estimated average HD is obtained from the
previous one. Now, by substituting the estimated average HD in equation (14), by the
obtained one in the equation (15), equation (14) can be rewritten as:

THn= x* (1-g) α n-1+ x * g * HDn + y* νn

This equation shows that x*(1-g) of the previous estimated average HD, is preserved
in the current threshold value. The first multiplication factor (x) is chosen large
enough to reduce the false alarm rate [9], and g, as defined before, is chosen to be
negative exponents of 2, thus the preserved value is significant. Consequently, if the
attacker succeeds to raise the estimated average HD, the threshold will be raised too
and kept high for some time, and then the attacker has the opportunity to send
undetected attack. Figure (7) demonstrates how attacker can use this bug to mask
different types of SIP flooding attacks.
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Figure (7): HD and attack masking problem

Attacker sends the mask as a preamble; its main aim is to raise the threshold. The
detection algorithm will be able to detect the mask, but the intended attack remains
undetectable.

5.2. HD and adaptation with attack problem:

The threshold value in equation (14) permits to the current INVITE requests to be
increased in such a way that HDn becomes close to x* α n and kept undetectable, we
must note here that α n is the estimated average HD for the current sample. This
margin is big enough to gradually increase the detection threshold, attacker may get
aware of this fact and begins to abuse it as follow: Increasing the current HDn will
increase the Err value; see equation (11), and then α n will be increased too, (equation
(12)). Consequently, the THn will get higher. Attacker repeats this scenario and the
detection threshold increased gradually. When the threshold becomes high enough,
attacker continues sending the flooding requests. Figure (8-A) shows how quickly
attacker can increase the HD threshold to pass the attack. Figure (8-B) shows simple
adaptation with attack where the attacker begins by ten requests per second then
increases it gradually two percent each time.
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Figure (8): HD and adaptation with attack problem

5.3. HD request balancing problem:

Again, attacker easily defeats the HD algorithm. He can hide himself by sending
equal amounts of INVITE and BYE requests. Let us assume the current system
situation is normal, attacker sends a large and equal number of INVITE and BYE
requests. This means MINVITE is nearly equal to MBYE and then qINVITE and qBYE will

be adjacent to  , it looks like the situation is normal, then pINVITE and pBYE also are

adjacent to , thus the HD value will be close to zero, and no attack detection occur.

6. Conclusion and future work:

The analytical and experimental work which is performed in this paper demonstrates
that the studied four flooding attacks detection algorithms have two common
problems, the attack masking and adaptation with attack problems. These problems
resulted from the memorized quantity which preserved by the algorithms to adapt
with the new request rate. In the first problem, attacker makes a sudden change in the
detection algorithm parameters by sending an attack mask, which consists of
adequate quantity of requests. This sudden change is detected as attack, but before the
algorithm parameters turn again to their average normal values, attacker sends the
intended attack and it is kept undetected. In the adaptation with attack problem,
attacker gradually increases the attack requests in such a way that the increased
amount remains close to the upper normal limit. Consequently, the algorithm
parameters are deviated gradually to adapt with the new normal increased requests.
The paper also demonstrates that anomaly detection algorithms, which utilize the
protocol behavior, are simple to be defeated, and the only thing attacker required to
do is to consider the same protocol behavior during the attacking process.

(A) (B)
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The subject of future work is to build a new flooding attack detection algorithm that
overcome the attack masking and adaptation with attack problems, and is also
independent from protocol behavior.
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