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Abstract:

In this paper, we consider a binary distributed detection system in which a system of
multiple sensors monitors a common volume and provides relevant binary decisions
about the state of the environment to a data fusion center. The fusion center combines
the binary decisions of the individual distributed sensorsinto afina global decision. We
propose a new hard decision integration method for multiple sensor decision fusion
systems. The proposed hard decision fusion method determines the fase alarm
probabilities and the detection probabilities that yield maximum performance. The
performance of the proposed method is provided in case of Rayleigh distributed
observations and is proved to be ssmple and efficient.
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1. Introduction:

Interest in signal processing with multiple-sensor systems has surfaced with anticipated
applications in target detection using geographically distributed sensors [1]. We
consider the problem of decision fusion in a multiple sensor system based on a system
of multiple distributed sensors and a fusion center. This is considered as a binary
hypothesis testing problem with two hypotheses; Ho designating signal absent and

Hldesi gnating signal present. The distributed sensors monitor the same object scene and

transmit their information (binary local decisions) about a hypothesis to the fusion
center. The fusion center is responsible for combining the individual sensors decisions
and making a final globa decision about the same hypothesis. Such systems are
expected to increase the reliability of the detection and be immune to noise interference
and failure [2-4].

The Neyman-Pearson fusion of statistically independent sensor decisions has been
investigated in many previous literatures [4-6]. However, most of them have
concentrated on optimizing system performance at the individual sensors or at the
fusion center but not both. The global optimum solution of a distributed decision system
consists of a set of strongly coupled conditions. Thus explicit solutions of sensor
thresholds and fusion rule are not obtained. Instead, the solution of a distributed sensor
system is usualy obtained by adopting various Boolean algebraic combinations as
fusion strategies [6, 7]. Since the Boolean algebraic fusion rules are optimum only in
case of identical sensors, the use of such fusion rules does not obtain the optimum
solutionsin case of non identical sensors (practical case).

In this paper, a new hard decision integration method for multiple sensor distributed
detection systems, in terms of both the sensors and the fusion center, according to
Neyman-Pearson strategy, is proposed. The proposed algorithm determines, for a given
global false alarm probability, the corresponding optimum setting of the thresholds both
at the fusion center and at the sensors. It scans all possible solutions and picks the
solution that gives the largest global detection probability. The proposed method is
found to be simple, accurate and fast. It is worth noting that the execution time of the
proposed agorithm is mainly dependent on the number of considered sensors no matter
they are identical or not, although from an analytic point of view finding optimum
operating point of N sensors is far more difficult than finding a common optimum
operating point in case of identical sensors. The performance analysis of the proposed
algorithm is provided in case of Rayleigh distributed observations. The remainder of
this paper is organized as follow. A brief review of the distributed sensor decision
fusion systems and the problem formulation are presented in Section 2. The solution to
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the distributed sensor decision fusion systems according to the Neyman-Pearson
criterion, in terms of the sensors thresholds and the data fusion rule, is proposed in
Section 3. The performance of the proposed algorithm and several optimization
examples are reported in Section 4. Finally, concluding remarks are given in Section 5.

2. Problem Statement:

Given n-sensor distributed decision fusion system with data fusion, where each sensor
observes a common volume and receives observations from observed targets. Each local
sensor decide whether there is a target or not, according to a comparison of its
likelihood ratio with a sensor threshold. If the sensor's likelihood ratio greater than the
sensor's threshold, its local decision will be one (u =1). If the sensor's likelihood ratio

lower than the sensor's threshold, its local decision will be zero(u, =0), i.e. the local
sensor decisions are either ones or zeros (u, =0,Li=12,..,n) . The loca sensors send

their local decisions to a datafusion center. The data fusion center combines the sensors
local decisions { u 's} to derive a global decision u,. The objective is to optimize the

structures of both the sensors and the fusion center according to Neyman-Pearson
criterion. This is a distributed hypothesis testing problem with two hypotheses H Oand

H,[8]. The Neyman Pearson (NP) optimization strategy maximizes the global detection

probability (GDP) for a desired global fase alarm probability (GFAP). The prior
knowledge needed for applying the NP strategy comprises the desired GFAP, and the
probability density functions of the sensor observations conditioned to hypotheses
Hoand H,;i.e. P(y,|H,) and P(y, |H,), k=12,....,n.

Let u be the vector formed of the decisions (u,,u,,.........., u.). Thus u belongs to the n-
dimensiona binary space Y". The global missed-detection and false alarm probabilities
are respectively the probabilities Pr(u,=0/H,) and Pr(u,=1H,). According to the NP
criterion, it is desired to determine the fusion strategy Pr(u, =1|u)and the sensor
decision strategies Pr(u =1]y,),1<k<n, which minimizes Pr(u,=0|H,) under the
constraint

Pr(u,=1/H,)<GFAP Q)
The optimal fusion strategy is deterministic [9, 10] and is given as

L(u) = PrulHy) ()
pr(ulH,)
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The optimal decision strategy for the k" sensor is[4]

1 if P(y, |H)Cu—4 P(y |Ho)Cyo >0 ©)

pr(u, =1] Yk):{ ) .
0 if P(y, [H,)C -2 P(y, |Hy)Cy, <0,

or equivalently,
L(yk)cklf iCy,, 1<k<n, (4)
where
P(y, |H,) 5)
L =—2k Y~ 1<k<n.
Y=, [Ho)

It is clear from (4) and (5) that the k™ sensor decision strategy, 1<k<n, isdeterministic
and it partitions the observation space Y into two disjoint subspaces, Y, and Y, such
that

Yk :{yk : L(yk)ckl >A*Ck0}, 1<k<n. (6)

In[4, 9], it is shown that the fusion strategy (3) is equivalent to

n u0>:l 7
V=2 au -, (7)

up=0

where

ak=lnM 1<k<n (8)
pfk(l_ pdk) ’ -

t,=InA —kzlln(

1- pd, J | (9)

1- pf,

3. Proposed integration approach:

The proposed method determines for agiven G4, the corresponding optimum setting
of the fusion center threshold (t,) and of the operating points of the sensors
(pf.,pd,),1<k<n,as well as the achieved GDP. In the following a parameter w is
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introduced to scan the permissible values of the fusion center threshold.
The proposed algorithm has the following steps:

(1) For every sensor determine the ROC corresponding to a likelihood ratio decision
rule either explicitly, pd, =4 (pf.),or parametrically pd, = 5. (1), pf, =  a.(4),
with the threshold 2, as aparameter,i1<k<n.

(2) Assign w its smallest possible values .

(3) Select arbitrary operating points (pf,, pd,) on the sensors ROCs such that
i1 pf, <GFAP (10)
(4) Associate with every vector u of Y"the corresponding value of pr(u|H,) and
pr(ulH,).
(5) Rearrange the values of pr(u|H,)and pr(u|H,)in adescending order.

(6) Find the minimum value v, such that

priV(u) >v, |H,]<GFAP, (11)
(7) Evaluate the probability GDP as

GOP= = pr(u|Hy). (12)

(8) Calculate the threshold t,as
t,=wv, +1-w)v,,, O<w<l. (13)

(9 For every sensor calculate the coefficients C,,,i=01k=12,...,nfrom (4).
Update the operating points (pf,, pd,) according to the new thresholdsin the set of
decision rules (5).

(10) For the assigned value of w repeat the steps from (4) to (9) often enough
until the difference between the estimated values of GDP in successive iterations
becomes zero. Skip the value of w if thiscondition is not satisfied.

(12) Increment w and repeat the steps from (3) to (11) till al the possible
values of w are exhausted.
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(12) Scan the recorded values of w and their associated steady state estimates
GDP. The value of w which results in the largest value of GDP is the optimum
choice (w,, ,GDP,,, ).

pt ?

4. Performance of the proposed integration approach:

We consider the case of Rayleigh distributed observations. The probability distributions
under both hypotheses are given by [9]

P(y, [H,) = exp(-Y,), (14)
Py, [H,) =d exp(=dy y),  d >0k=12,........, n, fory, >0, (15)
P(ylei):O,kzl,Z ....... n,i:0,1. (16)

The coefficient d, ,k=1,2,........., n, isrelated to the signal to noiseratio at each individual
sensor (r,) as

1 (17)

d = k=12, n.
< l4r, L

The detection and false alarm probabilities are related, in terms of the coefficient d as:

pd, = pf, " = pf %, k=12,.........., n. (18)
We consider three cases. The first case considers a distributed decision fusion system
with two non-identical sensors. In this case, the globa optimization is obtained as
described in [7, 10]. Theresult is plotted in Fig. 1 in caseof d, =0.1 and d, =0.4. Figure
1 shows the OR and the AND fusion rules (the optimal ROCs in case of two sensors [4,
9, 30]). The AND fusion rule is optimum at very low false alarm probabilities while the
OR fusion rule is optimum at high false alarm probabilities The ROC achieved by the
proposed agorithm is shown in Fig. 2. From Figures 1 and 2 it is readily seen that the
ROC achieved by the proposed algorithm is indeed the convex hull of the ROCs
obtained with the OR and AND fusion rules; i.e. it isthe optima ROC.

The second case is the case of identical sensor where the optimum fusion rule reducesto
K -out-of- N fusion rule. For a specified K, we solve the equation
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n . . 19
GFAP= Y ci” pf ' (1- pf)" !, (19)
i =K

for pf and then determine the corresponding pd from the common ROC of the identical
sensors. The global detection probability, for the specified K, is calculated from

n : . 20

GDP= ¥ ci” pd' - pd)" " (20)
=k

For every desire value of GFAP, there is an optimum integer value of K that maximizes

the GDP.

The second case considers a distributed decision fusion system with four identical
sensors in case of Rayleigh distributed observations with d=0.02  The ROCs
corresponding to the K-out-of-n fusion rules, K =1,2,3,4, and to the proposed Neyman
Pearson fusion of the decisions of the four identical sensors are given in Table 1. The
points in the last row of Table 1 are determined using the proposed algorithm. It can
easily be verified that the last ROC is the convex hull of the other ROCs. The third case
considers the solution of six non-identical sensors in case of Rayleigh distributed
observations at different small values of GFAPs. Table 2 shows the results. It is shown
that the proposed integration method is very efficient. The proposed algorithm can be
used to optimize distributed decision fusion systems according to criteria other than the
Neyman Pearson criterion. Foe example, in multiple sensor distributed IFF
(Identification Friend or Foe) systems two types of decision errors may be committed:
identifying a hostile target as a friendly one, or conversely identifying a friendly target
as a hostile one. In heavy air combat situations both types of errors are aimost equally
significant. Hence it is more convenient to optimize the decision strategy of the fusion
center according to the Ideal observer criterion rather than the Neyman Pearson
criterion.
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Figure (1): Comparison of ROCs of a two different sensors
using "AND" and "OR" fusion rules
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Figure (2): The global ROC of a two different sensors
using the proposed approach
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Table (1): Comparison of ROC's of four-sensor distributed detection
systemwith K —out -of —n fusion rules with the proposed
integration method (d =0.02)

GDP | GDP | GDP | GDP R

GFAP (K=1) | (K=2) | (K=3) | (K=4) Yon CDF
00015 | .99889 | .9962 | 9764 | .8318 | .56358 | .99889
00025 | .99905 | .9967 | 9786 | .8471 | .56898 | .99905
00035 | .99926 | .9970 | .9800 | .8529 | .57213 | .99926
00045 | .99928 | 9972 | 9810 | .8572 | 57951 | .99928
00055 | .99932 | .9974 | 9818 | .8621 | .58136 | .99932
00065 | .99936 | .9975 | .9824 | .8648 | .58719 | .99936
00075 | .99939 | .9976 | .9830 | .8671 | .59108 | .99939
.00085 | .99941 | .99780 | .9834 | .8691 | .61005 | .99941
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Table (2): Solution of a six non identical sensors distributed detection system at
different values of GFAP's in case of Rayleigh distributed observations

GFAP =10, W, = 0.5892341
dy ty pfi pdy ay
0.03 8.4145 2216384x10™4 0.776908 9.66198
0.04 8.4657 2.105587x10~4 0.712746 9.37430
0.05 8.5183 1.997695x 104 0.653170 9.15115
006 | 85723 | 1899743x10~ 0597896 | 8.96883
0.07 8.6277 1.790768x 104 0.546654 8.81468
0.08 8.7234 1.626792x 104 0.486678 8.72063
t, = 5.23567, GDP,. = 0.966789
GFAP =10°, w,, = 0.7178023
d ty pfy pdy ay
0.03 | 152456 | 53g08sax10 7 | 0.632947 | 1579048
0.04 | 153365 | 51g4913x10 7 | 0541474 | 1550280
005 | 154307 | 1ossa68<10-7 | 0462302 | 15.27965
006 | 155283 | 1g03530<10-7 | 0393883 | 1509733
007 | 15629 | 130027107 | 0.334853 | 14.94318
008 | 15.7301 | 1 031800x10-7 | 0.261028 | 14.71891
t, = 9.1046, GDP,, = 0.9310265
GFAP=10°, w,, = 0.8290315
d ty P pdy ay
003 | 220735 | ,501706x10-0 | 0515712 | 22.13640
0.04 | 222071 | 5o5775px10-10 | 0411362 | 21.84872
0.05 | 223467 | 1970paax10-10 | 0.327151 | 21.62558
0.06 | 224926 | 1 704503x10-10 | 0259356 | 21.44326
0.07 | 226449 | 1 63613<10- 10 | 0204918 | 21.28911
0.08 | 228219 | ;1g3045x10-10 | 0.157830 | 21.09367
t, =14.1547, GDP,,, = 0.9048920
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6. Conclusions:

In this paper, a new hard decision integration method for multiple sensor distributed
detection systems has been proposed. The proposed algorithm determines, for a given
false alarm probability, the corresponding optimum setting of the thresholds both at the
fusion center and at the sensors. It scans all possible solutions and picks the solution that
gives the largest globa detection probability. Examples of global optimization of
several distributed decision fusion systems have been presented. The proposed
algorithm is found to be simple, accurate and fast. It is worth noting that the execution
time of the proposed algorithm is mainly dependent on the number of considered
sensors no matter they are identical or not, It is also shown that the proposed algorithm
can be used to optimize distributed decision fusion systems according to criteria other
than the Neyman-Pearson one.
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