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Abstract:

In this paper, we consider a binary distributed detection system in which a system of
multiple sensors monitors a common volume and provides relevant binary decisions
about the state of the environment to a data fusion center. The fusion center combines
the binary decisions of the individual distributed sensors into a final global decision. We
propose a new hard decision integration method for multiple sensor decision fusion
systems. The proposed hard decision fusion method determines the false alarm
probabilities and the detection probabilities that yield maximum performance. The
performance of the proposed method is provided in case of Rayleigh distributed
observations and is proved to be simple and efficient.
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1. Introduction:

Interest in signal processing with multiple-sensor systems has surfaced with anticipated
applications in target detection using geographically distributed sensors [1]. We
consider the problem of decision fusion in a multiple sensor system based on a system
of multiple distributed sensors and a fusion center. This is considered as a binary
hypothesis testing problem with two hypotheses;

0
H  designating signal absent and

1
H designating signal present. The distributed sensors monitor the same object scene and

transmit their information (binary local decisions) about a hypothesis to the fusion
center. The fusion center is responsible for combining the individual sensors decisions
and making a final global decision about the same hypothesis. Such systems are
expected to increase the reliability of the detection and be immune to noise interference
and failure [2-4].

The Neyman-Pearson fusion of statistically independent sensor decisions has been
investigated in many previous literatures [4-6]. However, most of them have
concentrated on optimizing system performance at the individual sensors or at the
fusion center but not both. The global optimum solution of a distributed decision system
consists of a set of strongly coupled conditions. Thus explicit solutions of sensor
thresholds and fusion rule are not obtained. Instead, the solution of a distributed sensor
system is usually obtained by adopting various Boolean algebraic combinations as
fusion strategies [6, 7]. Since the Boolean algebraic fusion rules are optimum only in
case of identical sensors, the use of such fusion rules does not obtain the optimum
solutions in case of non identical sensors (practical case).

In this paper, a new hard decision integration method for multiple sensor distributed
detection systems, in terms of both the sensors and the fusion center, according to
Neyman-Pearson strategy, is proposed. The proposed algorithm determines, for a given
global false alarm probability, the corresponding optimum setting of the thresholds both
at the fusion center and at the sensors. It scans all possible solutions and picks the
solution that gives the largest global detection probability. The proposed method is
found to be simple, accurate and fast. It is worth noting that the execution time of the
proposed algorithm is mainly dependent on the number of considered sensors no matter
they are identical or not, although from an analytic point of view finding optimum
operating point of n  sensors  is far more difficult than finding a common optimum
operating point  in case of identical sensors. The performance analysis of the proposed
algorithm is provided in case of Rayleigh distributed observations. The remainder of
this paper is organized as follow. A brief review of the distributed sensor decision
fusion systems and the problem formulation are presented in Section 2.  The solution to



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE342 - 3

the distributed sensor decision fusion systems according to the Neyman-Pearson
criterion, in terms of the sensors thresholds and the data fusion rule, is proposed in
Section 3. The performance of the proposed algorithm and several optimization
examples are reported in Section 4. Finally, concluding remarks are given in Section 5.

2. Problem Statement:

Given n-sensor distributed decision fusion system with data fusion, where each sensor
observes a common volume and receives observations from observed targets. Each local
sensor decide whether there is a target or not, according to a comparison of its
likelihood ratio with a sensor threshold. If the sensor's likelihood ratio greater than the
sensor's threshold, its local decision will be one )1( iu .  If the sensor's likelihood ratio
lower than the sensor's threshold, its local decision will be zero )0( iu , i.e. the local
sensor decisions are either ones or zeros )...,,2,1,1,0( niui  . The local sensors send
their local decisions to a data fusion center. The data fusion center combines the sensors
local decisions { iu 's} to derive a global decision 0u . The objective is to optimize the
structures of both the sensors and the fusion center according to Neyman-Pearson
criterion. This is a distributed hypothesis testing problem with two hypotheses

0
H and

1H [8]. The Neyman Pearson (NP) optimization strategy maximizes the global detection
probability (GDP) for a desired global false alarm probability (GFAP). The prior
knowledge needed for applying the NP strategy comprises the desired GFAP, and the
probability density functions of the sensor observations conditioned to hypotheses

0
H and 1H ; i.e. )|( 0HyP k  and )|( 1HyP k , nk ....,,2,1 .

Let u  be the vector formed of the decisions ).,,.........,( 21 nuuu . Thus u belongs to the n -
dimensional binary space n . The global missed-detection and false alarm probabilities
are respectively the probabilities )|0Pr( 10 Hu   and )|1Pr( 00 Hu  . According to the NP
criterion, it is desired to determine the fusion strategy )|1Pr( 0 uu and the sensor
decision strategies ,1),|1Pr( nkyu kk   which minimizes )|0Pr( 10 Hu  under the
constraint

GFAPHu  )|1Pr( 00 (1)

The optimal fusion strategy is deterministic [9, 10] and is given as

,
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0
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H

H
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The optimal decision strategy for the thk sensor is [4]












,0)|(P)|(Pif0

0)|(P)|(Pif1
)|1(pr

00
*

11

00
*

11

kkkk

kkkk

kk
CHyCHy

CHyCHy
yu



 (3)

or equivalently,
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It is clear from (4) and (5) that the thk sensor decision strategy, nk 1 , is deterministic
and it partitions the observation space Y into two disjoint subspaces, kY and kŶ  such
that

.1,})(:{ 0
*

1 nkCCyLy kkkkk  Y (6)

In [4, 9], it is shown that the fusion strategy (3) is equivalent to
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3. Proposed integration approach:

The proposed method determines for a given GFAP, the corresponding optimum setting
of the fusion center threshold ( 0t ) and of the operating points of the sensors

,1),,( nkpdpf kk  as well as the achieved GDP . In the following a parameter w  is
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introduced to scan the permissible values of the fusion center threshold.

The proposed algorithm has the following steps:

(1) For every sensor determine the ROC corresponding to a likelihood ratio decision
rule either explicitly, ),( kkk pfpd  or parametrically ),( kkkpd  kpf ),( kk 
with the threshold k  as a parameter, nk 1 .

(2) Assign w  its smallest possible value .

(3) Select arbitrary operating points ),( kk pdpf on the sensors ROCs such that




n

k k GFAPpf
1

(10)

(4) Associate with every vector u  of n the corresponding value of )|(pr 0Hu and
)|(pr 1Hu .

(5) Rearrange the values of )|(pr 0Hu and )|(pr 1Hu in a descending order.

(6) Find the minimum value v such that

GFAPHvV  ]|)([pr 0u , (11)

(7) Evaluate the probability PDG ˆ  as





Du
u .)|(prˆ

1HPDG (12)

(8) Calculate the threshold 0t as

10,)1( 10   wvwvwt  . (13)

(9) For every sensor calculate the coefficients ,.....,,2,1,1,0,, nkiC ik  from (4).

Update the operating points ),( kk pdpf according to the new thresholds in the set of
decision rules (5).

(10) For the assigned value of w  repeat the steps from (4) to (9) often enough
until the difference between the estimated values of GDP in successive iterations
becomes zero. Skip the value of w  if this condition is not satisfied.

(11) Increment w  and repeat the steps from (3) to (11) till all the possible
values of w  are exhausted.
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(12) Scan the recorded values of w  and their associated steady state estimates
PDG ˆ . The value of w  which results in the largest value of PDG ˆ  is the optimum

choice ( optw , max
ˆPDG ).

4. Performance of the proposed integration approach:

We consider the case of Rayleigh distributed observations. The probability distributions
under both hypotheses are given by [9]

,)exp()|( 0 kk yHyP  (14)

,0for,.........,,2,1,0,)exp()|( 1  kkkkkk ynkdyddHyP (15)

.1,0,.....,,2,1,0)|(  inkHyP ik (16)

The coefficient kd ,.........,,2,1, nk   is related to the signal to noise ratio at each individual
sensor ( kr ) as

.....,..........,2,1,
1

1
nk

r
d

k
k 


 (17)

The detection and false alarm probabilities are related, in terms of the coefficient d as:

..,..........,2,1,)1/(1 nkpfpfpd kk d
k

r
kk   (18)

We consider three cases. The first case considers a distributed decision fusion system
with two non-identical sensors. In this case, the global optimization is obtained as
described in [7, 10]. The result is plotted in Fig. 1 in case of 1.01 d and 4.02 d . Figure
1 shows the OR and the AND fusion rules (the optimal ROCs in case of two sensors [4,
9, 30]). The AND fusion rule is optimum at very low false alarm probabilities while the
OR fusion rule is optimum at high false alarm probabilities The ROC achieved by the
proposed algorithm is shown in Fig. 2. From Figures 1 and 2  it is readily seen that the
ROC achieved by the proposed algorithm is indeed the convex hull of the ROCs
obtained with the OR and AND fusion rules; i.e. it is the optimal ROC.

The second case is the case of identical sensor where the optimum fusion rule reduces to
K -out-of- n  fusion rule. For a specified K , we solve the equation
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,)1( inpf
n

Ki

ipfn
i

cGFAP 



(19)

for pf and then determine the corresponding pd from the common ROC of the identical
sensors. The global detection probability, for the specified K , is calculated from

.)1( inpd
n

ki

ipdn
i

cGDP 



(20)

For every desire value of GFAP, there is an optimum integer value of K  that maximizes
the GDP.

The second case considers a distributed decision fusion system with four identical
sensors in case of Rayleigh distributed observations with 02.0d . The ROCs
corresponding to the K -out-of- n  fusion rules, ,4,3,2,1K  and to the proposed Neyman
Pearson fusion of the decisions of the four identical sensors are given in Table 1. The
points in the last row of Table 1 are determined using the proposed algorithm. It can
easily be verified that the last ROC is the convex hull of the other ROCs. The third case
considers the solution of six non-identical sensors in case of Rayleigh distributed
observations at different small values of GFAPs. Table 2 shows the results. It is shown
that the proposed integration method is very efficient. The proposed algorithm can be
used to optimize distributed decision fusion systems according to criteria other than the
Neyman Pearson criterion. Foe example, in multiple sensor distributed IFF
(Identification Friend or Foe) systems two types of decision errors may be committed:
identifying a hostile target as a friendly one, or conversely identifying a friendly target
as a hostile one. In heavy air combat situations both types of errors are almost equally
significant. Hence it is more convenient to optimize the decision strategy of the fusion
center according to the Ideal observer criterion rather than the Neyman Pearson
criterion.
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Figure (1): Comparison of ROCs of a two different sensors
using ''AND'' and ''OR'' fusion rules
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Figure (2): The global ROC of a two different sensors
                                               using the proposed approach
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Table (1): Comparison of s'ROC of  four-sensor distributed detection
 system with nK  of-out  fusion rules with the proposed
 integration method ( 02.0d )

GFAP
)1( K

GDP

)2( K

GDP

)3( K

GDP

)4( K

GDP
optw

max
ˆPDG

.00015 .99889 .9962 .9764 .8318 .56358 .99889

.00025 .99905 .9967 .9786 .8471 .56898 .99905

.00035 .99926 .9970 .9800 .8529 .57213 .99926

.00045 .99928 .9972 .9810 .8572 .57951 .99928

.00055 .99932 .9974 .9818 .8621 .58136 .99932

.00065 .99936 .9975 .9824 .8648 .58719 .99936

.00075 .99939 .9976 .9830 .8671 .59108 .99939

.00085 .99941 .99780 .9834 .8691 .61005 .99941
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Table (2):  Solution of a six non identical sensors distributed detection system at
 different values of s'GFAP  in case of Rayleigh distributed observations

5892341.0,10 opt
4   wGFAP

kd kt kpf kpd ka

0.03 8.4145 2.216384 410 0.776908 9.66198

0.04 8.4657 2.105587 410 0.712746 9.37430

0.05 8.5183 1.997695 410 0.653170 9.15115

0.06 8.5723 1.892743 410 0.597896 8.96883

0.07 8.6277 1.790768 410 0.546654 8.81468

0.08 8.7234 1.626792 410 0.486678 8.72063

966789.0ˆ,23567.5 max0  PDGt

7178023.0,10 opt
5   wGFAP

kd kt kpf kpd ka

0.03 15.2456 2.392884 710 0.632947 15.79048

0.04 15.3365 2.184913 710 0.541474 15.50280

0.05 15.4307 1.988468 710 0.462302 15.27965

0.06 15.5283 1.803530 710 0.393883 15.09733

0.07 15.6295 1.630027 710 0.334853 14.94318

0.08 15.7301 1.231890 710 0.261028 14.71891

9310265.0ˆ,1046.9 max0  PDGt

8290315.0,10 opt
6   wGFAP

kd kt kpf kpd ka

0.03 22.0735 2.591706 1010 0.515712 22.13640

0.04 22.2071 2.267752 1010 0.411362 21.84872

0.05 22.3467 1.972244 1010 0.327151 21.62558

0.06 22.4926 1.704503 1010 0.259356 21.44326

0.07 22.6449 1.463613 1010 0.204918 21.28911

0.08 22.8219 1.183045 1010 0.157830 21.09367

9048920.0ˆ,1547.14 max0  PDGt



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE342 - 11

6. Conclusions:

In this paper, a new hard decision integration method for multiple sensor distributed
detection systems has been proposed. The proposed algorithm determines, for a given
false alarm probability, the corresponding optimum setting of the thresholds both at the
fusion center and at the sensors. It scans all possible solutions and picks the solution that
gives the largest global detection probability. Examples of global optimization of
several distributed decision fusion systems have been presented. The proposed
algorithm is found to be simple, accurate and fast. It is worth noting that the execution
time of the proposed algorithm is mainly dependent on the number of considered
sensors no matter they are identical or not, It is also shown that the proposed algorithm
can be used to optimize distributed decision fusion systems according to criteria other
than the Neyman-Pearson one.
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