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Abstract:

The UAV flight control system is rich with attractive and challenging design problems 
to achieve robust stability and acceptable performance across specified flight envelope 
in the presence of uncertainties. Therefore, this paper is devoted to design an adequate 
flight control system for stabilizing a fixed wing (Aerosonde) UAV under exogenous 

inputs. This UAV is modeled and it is utilized with the   loop-shaping design 
procedure (LSDP) to design the necessary flight control system such that the 
performance requirements are achieved. This work is compared with a previous one 
using the classical controllers in terms of performance and stability robustness including 
disturbance rejection, noise attenuation, unmodeled dynamics, and control effort. The 

obtained results clarify the ability of the designed system using H  to cope with the 
specified levels of uncertainty including unmodeled dynamics, disturbances and 
measurement noise. In addition, it reveals its superior capabilities upon the classical 
techniques.
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1. Introduction:

The  loop-shaping design procedure (LSDP) is a sensible and powerful procedure 
combined with the classical loop shaping of the open loop system frequency response to 
have a desired loop shape. It is apart of the H-infinity optimization problem that has 
been developed by McFarlane and Glover. The feature of this technique is that the 
closed loop requirements (disturbance rejection and noise attenuation properties) can be 
specified by shaping the open-loop gains. The obtained controller is robust against the 
normalized coprime factor uncertainty.
Whenever the LSDP is used, the optimal robust controller can be limited to solve two 
Riccati equations [1]; (Control Algebraic Riccati Equation (CARE) and Filter Algebraic 
Riccati Equation (FARE). Thus, the robust stabilization problem reduces to the solution 
of the two Riccati equations simultaneously instead of  -iteration process associated 

with traditional loop shaping such as mixed-sensitivity [1]. Two of H loop shaping 
design procedures (LSDP) are available as shown in Figure (1); conventional loop 
shaping and target desired loop shaping.

Figure (1): H∞  Loop Shaping Design Procedure

Here, the original open-loop system, P, is shaped by the two shaping functions, W1 (pre-compensator) 

and W2 (post-compensator) to match as closely as possible a desired shape to the singular values of the 

open-loop frequency response. The block diagram of this method is summarized in Figures (2) and 

(3).The shaped plant can be written as follows:
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Figure (2): P is shaped by W1 and W2

Figure (3): Final controller K is constructed by combining K∞ with W1 and W2

Then, the controller is formed by combining the central controller K∞ with the shaping 
functions W1 and W2as shown in the Figure (3). The final controller plant can be written 
as follows:
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1.1.  Target Desired Loop Shaping:

This technique has been developed by Safonov-Le [2] for designing an optimal and 
stable minimum-phase Glover-McFarlane Pre-filter W  that locates (fitting)  singular 
values of the open-loop frequency response plot to any desired singular values plot as 
precisely as possible. The algorithm combines a novel all-pass squaring-down 
compensator technique, of Safonov-Le, together with optimal Balanced Stochastic 

Truncation (BST) minimal realization techniques and normalized-coprime optimal 

synthesis. Further, the Safonov-Le pre-filter has the important property that plant RHP 
zeros are left invariant; i.e., no performance-limiting RHP zeros and poles are 
introduced. The result is that the designer is completely relieved of task of manually 
computing the weightW . Designing an optimal loop shaping controller K  for plant P

with this algorithm is simple as specifying the desired loop shape dP  [2]. The block 
diagram of this method is summarized in Figures (4) and (5). The shaped plant is 

1W K 2W P

1KWK 
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K W P

WPPs 

written as:
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And the final robust controller is of the form:
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Where W  is the Safonov-Le pre-filter

In this paper, the H optimization with target desired loop-shaping is selected for 
designing a robust controller to stabilize the longitudinal.

Figure (4): P is shaped by W and stabilized by K∞

Figure (5): Final controller K  is constructed by combining K with W

2. Problem Formulation:

WKK 

K W P
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Given a shaped plant sP  and DCBA ,,,  which 
represent the shaped plants in the state space 
form. The robust stabilization problem is to 
find a realizable and stablizable optimal 
robust controller K  such that

  




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






 111 MPKI
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(5)

where   is the 
  from  , to  Ty , 

Figure(6), and   1 PKI  is the sensitivity function. Mc-Farlane and Glover have shown 

that, if the normalized coprime uncertainty is used, the optimal values of minmax
or  can 

be found directly without iteration from the following relation [3]:
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Where:   is an uncertainty boundary, called stability margin,   is the spectral radius 
(maximum eigenvalues), Z and X are the solutions to (GCARE) and (GFARE)
The Generalized Control Algebraic Riccati Equation (GCARE) and the Generalized 
Filter Algebraic Riccati Equation (GFARE) can be written as follows [1]:

0)()( 1111   TTTTT BBSCZRZCCDBSAZZCDBSA (7)
0)()( 1111   CRCXXBSCDBSAXXCDBSA TTTT (8)

Where DDIS T  &  TDDIR 
The controller which guarantees that:   
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is given by

(10)

Where  XBCDSF TT  1

 &   XZIL  21   and (A, B, C, D) are the minimum 

realization of sP . Note that, if min opt  , L becomes   XZXZL    [1].

3. Controller Order Reduction:

Figure (6): left coprime factor
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Figure (7): Design flow of low-order controllers
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Due to the high-order controllers, the robust control system design necessitates the reduction of the 

control system order. It is well-known that advanced control theories produce high order controllers 

compared to classical techniques. The order can be reduced using several ways as depicted in Figure 

(7) [4]. In this paper, a high order controller is designed first stage and then its order is reduced   in the 

second stage because there is freedom 

in choosing the final order of the 

controller. The main approaches which 

are available to reduce are [4]:

1. Balanced truncation 

2. Balanced residualization. 

3. Optimal Hankel norm approximation

Balanced truncation and balanced 
residualization approaches are 
convenient for removing the high 
frequency or fast modes of a state space 
realization [4], while an optimal Hankel 
norm approximation approach is used 
to remove the unobservable and/or uncontrollable modes [3]. Here the optimal Hankel norm 
approximation approach is selected to bound the additive error. The Hankel singular values, named 
after Hermann Hankel, provide a measure of energy for each state in the system. They are the basis for 
balanced model reduction, in which high energy states are retained while low energy states are 
discarded. The reduced model retains the important features of the original model [5]. The pitch-rate 
SAS inner loop, which is designed to increase the damping of the short-period 
oscillation. This can be accomplished by adding an inner feedback loop utilizing a rate 
gyro for sensing the pitch-rate controlled variable. The CAS outer loop consists of the 
feedback of the output Q. The error difference between Qcom and Q is fed to a PID 
controller to improve tracking performance. Since there is a sign change present 
inherently in the aircraft dynamics associated with the relationship of the pitch-rate to 
elevator deflection, the feedback signal is added to the SAS command voltage signal.

4. Longitudinal dynamics control design:

Before starting the design procedure, the open loop frequency response of the linear 
model is analyzed in some details with concentration on its shape in the low and high 
frequency regions. The significance of this analysis is to show the actuators (elevator) 
input effect on all outputs states individually [1]. The information gain from this 
analysis can be used to aid the design of controller.
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Figure (8): Block diagram of uncompensated longitudinal plant 
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4.1.  Open-Loop Singular Values:

The uncompensated longitudinal 

channel loop is summarised in 

the block diagram of Figure (8) 

where the plant dynamic model 

is obtained from the previews 

works [6]. The output matrix is 

set to extract the longitudinal 

states individually as shown 

bellow: 

]0001[uC is the axial velocity 

state [m/s], ]0010[wC is the normal velocity state 

[m/s], ]0100[qC is the pitch rate state [rad/s], 

]1000[C is the pitch angle state [deg]. The shape 

of singular values for the uncompensated 

longitudinal plant from the outputs states 

individually to the elevator actuator is 

shown in Figure (9) 

the following observations can be obtained from 

Figure (9):

1. For the pitch angle state to elevator input 

loop, it is expected to shave highest gain in the low frequency region and steeply roll-off (lowest 

gain) in the high frequency region for good disturbance rejection and noise attenuation.

2. For the axial velocity state to elevator input loop, it is expected to have smaller gain than the pitch 

angle state in the low frequency region and low gain but greater than the pitch angle state loop in the 

high frequency region. 

3. For the normal velocity state to elevator input loop, it is expected to have smaller gain than the axial 

velocity loop in the low frequency region and larger gain than the axial velocity loop in the high 

frequency region.

4. For the pitch rate state to elevator input loop, it is expected to have smallest gain in the low 

Figure (9):  SV of uncompensated 
longitudinal plant
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frequency region and largest gain in the high frequency region.

It is clear that the pitch angle state guarantees the performance and robustness requirements better than 
the other states since its singular value shape revealed that it has highest gain in the low frequency 
region and lowest gain in the high frequency region relative to the singular values shapes associated to 
the other states.

4.2. Target Desired Loop Shape Selection:

The target desired loop shape represents the design specifications in the frequency 
domain. The determination of the target 
desired loop shape is an iterative process. 
The target desired loop shape found to 
realize the specifications has the 
following transfer function [6]:

 
 205.0

3.08.2





s

s
Gd

(14)
The singular value of the desired loop 
shape is shown in Figure (10). The 
accuracy with which the control design 
matches the target desired loop is 
depicted with the dotted lines around the 
desired loop shape.

4.3. Robust Controller:

The linear time invariant robust controller is found by shaping the central controller with shaping function. 

The state space form of the robust controller is obtained as:
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The designed robust controller is 

optimally shaped and fitted the open loop 

frequency response of the plant to match as 

closely as possible a desired loop shape dG  as 

shown in Figure (11). The slope of the plant 

loop shape is increased at low frequency range so 

as to reduce the high frequency gain for good 

noise attenuation. 

The sensitivity function S  and 

complementary sensitivity function T of the 

closed loop system with K  is shown in Figure 

(12). It is clear that design requirements for the 

disturbance rejection and noise 

attenuation are satisfied. The LSDP 

controller K  ensures a stability margin of 

6957.0 or 4375.1 . This is a good level 

with respect to the robust stability, because 

a design is usually considered successful if  

25.0  or 4  [1]. 

The frequency response of system is shown in 

the figure (13).  The gain margin is modified 

from   into 65 [dB], the phase margin modified 

from -81.2107 into 88.6861[deg], and the 

bandwidth is modified from 0.9677 into 2.8637 [rad/s]. 

The modified controller order is reduced from ninth-

order system, equation (15), to a third- order system 

by using Hankel norm approximation technique. The 

Hankel singular value plot of the LSDP controller is 

shown in Figure (14). It showed that the controller K

Figure (12): S  and T  of LSDP 

controller for pitch channel
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Figure (11): Fitting open-loop SV of 
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has most of its energy stored in states 1 through 3. It is expected that these states preserve most of the 

dynamic response of the system.

Starting from the first-order, the controller's 

singular values shape s are compared with the 

singular value shape of the full-order controller as 

shown in Figure (15).  This figure clarifies the 

following observations:

 The first-order controller response is not close to 

the full-order response up to about 2950

[rad/s].

 The second-order controller response is not close to 

the full-order response up to about 60 [rad/s]. 

 The third-order controller response is close to the 

full-order controller at all. 

Therefore, the controller is reduced to the third-order, for which the state space form is as follows:
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(16)

The optimal solution is given by:

where P = PT ≥ 0 is the unique positive semi-definite solution of the algebraic Riccati 
equation:

Figure (14): Bar graph of Hankel SV of 

LSDP controller for pitch channel
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5. Controllers Comparison:

The robust (SDOF) controller is compared with classical (SDOF & TDOF) controllers that are designed 

in previews work which can be found in [6] and [7]. In comparison with the classical PID design, the 

robust LSDP controller revealed superior robust stability with equivalent level of nominal 

performance as shown in the following figures: 
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6. Conclusions:

The design of robust controllers for longitudinal dynamics is presented. The analysis of 

aircraft open-loop singular values is considered in addition to the   loop shaping 
design procedure (LSDP). Then, the controller order reduction is performed. A 
maximum evaluation is successfully made in linear simulation for singular values as an 
ultimate test of the final reduced-order controller. The robust controller is then 
compared with the classical ones in terms of disturbance rejection, noise attenuation, 
unmodeled dynamics, and control effort.
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Nomenclatures:

A, B, C, D matrices used in the state space description 

SDOF single degree of freedom
TDOF two degree of freedom
Z-N Ziegler Nichol
GA genetic algorithm
LSDP loop shaping design procedure


