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Abstract:

This paper introduces a new tuning technique for digital PID controller parameters of
multivariable systems. This technique is based on the modified Local Optimal
Controller (LOC) parameters for certain predefined model structures. The modified
LOC parameters can be obtained using the identified parameters of the predefined
model structure. As such, the digital PID controller parameters can be tuned using the
model parameters of certain predefined structures and a single tunable parameter related
to the LOC for each output of the multivariable system. Becoming a model-based
controller, the PID controller parameters can be adjusted in automatic mode.
This new technique is compared with the existing Genetic Algorithm (GA) technique
for tuning digital PID controller parameters. The comparison is based on the
experimental results of the Bytronic Process Control Unit (PCU).
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1. Introduction:

Due to the increasing complexity of process control systems, multivariable process
control has been received considerable attention over the past decades and numerous
theoretical and practical studies have been done in this area of research [1]. Among the
existing methods of multivariable control, the LOC is a method introduced by Lyantsev,
et al. in 2004 [2]. However, this LOC approach is incapable of dealing with non-
minimum phase systems.
A modified LOC approach for multivariable systems is proposed By Ashry, et al. in
2008 [3].
The proposed method provides closed loop stability when dealing with non-minimum
phase plant, which is a considerable advantage over the original LOC.
As discussed in [2, 3], LOC is a model-based controller. The model parameters and a
tunable parameter (h) for each output of the multivariable system are used to design that
controller. The LOC is designed for reduced order models as well as for full order
models and an excellent controlled system performance is achieved [4, 5].
Based on the results obtained for reduced order LOC, certain predefined model
structures are used to introduce a new tuning technique of digital PID/PI for Single-
Input Single-Output (SISO) systems [6, 7].
In this paper, a new tuning technique for digital PID controller parameters of
multivariable systems is introduced. This technique is based on the modified LOC
parameters for certain predefined model structures.
General relations between the multivariable PID controller parameters and the modified
LOC parameters are deduced in section 2. In section 3, the detailed relations are
deduced for Two-Input Two-Output (TITO) system. The experimental results are
represented in section 4. The new tuning technique is applied to Bytronic PCU as a
TITO system. The results obtained are compared with those of a conventional tuning
method (GA-tuned PID). Finally, the conclusion remarks are represented in section 5.

2. Tuning of digital PID controller using LOC for MIMO systems:

In this section, relations between the multivariable PID controller parameters and the
modified LOC parameters, which are functions of model parameters, are deduced for
certain predefined model structures. As such, the multivariable PID controller
parameters are transformed into model parameters and one tunable parameter for each
output.

2.1 Digital PID controller for multivariable systems:

In this subsection, a multivariable system of n-inputs and m-outputs will be considered
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(i.e. n×m system). The block diagram of this multivariable system when controlled by
PID controller is shown in Figure (1), where:
R is the reference input vector for the closed loop system (m × 1),
U is the PID controller output vector or the plant input vector (n × 1),
Y is the closed loop system output vector (m × 1),
E is the tracking error vector (m × 1), E = R − Y.
These vectors are defined in (1).

Figure (1): The block diagram of multivariable system controlled by PID.
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The multivariable PID controller (C) is n×m matrix of the form given in (2), where PIDij

is given in (3).
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The controller output vector U can be represented as in (4). As such, uk(i) is given in (5).
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Using equation (3), equation (5) can be represented as in (6).
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where ( ) ( ) ( 1).k k ku i u i u i   

2.2 LOC for multivariable systems of predefined model structure:

To be compared with PID controller, the multivariable model structure used to design
the LOC is represented in (7), where Gjk is given in (8).
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As such, the following equation can be represented for each output yj(i).
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From this model output equation the following equation can be deduced for the LOC [2,
3].
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For constant reference input vector R, the following equality is used to produce (12).
rj(i) = rj(i − 1) = rj(i − 2)  (11)
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For n×n systems, the n equations produced from (12) are solved to produce the
following group of equations.
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2.3Multivariable PID controller parameters in terms of LOC parameters:

To represent the multivariable PID controller parameters in terms of the LOC
parameters, the coefficients of e1(i), e1(i − 1), e1(i − 2), . . . , en(i), en(i − 1), en(i − 2) are
equated in (13) and (6).
As such the multivariable PID controller parameters KPij ,KIij ,KDij are functions of the
multivariable model parameters and the n tunable parameters h1,2,...,n.
In the next section, the multivariable PID controller parameters will be deduced in
details for the case studied (2×2 system).

3. Multivariable PID controller parameters in terms of LOC parameters for two-input
two-output systems:

For 2×2 systems, the multivariable PID controller outputs can be represented in the
following two equations.
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For the LOC of 2×2 systems, the following two equations are obtained.
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Solving these two equations to produce the group of equations represented in (13), the
following two equations are deduced.
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Considering the discrete time integrator for the modified LOC, the following two
equations are deduced, where Ts is the sampling time [3].
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Finally equating the coefficients of e1(i), e1(i−1), e1(i−2), e2(i), e2(i−1), e2(i−2) in
equations (14) and (15) of the PID controller from one hand and equations (20) and (21)
of the LOC from the other hand, the following equations are deduced. These equations
represent the multivariable PID controller parameters in terms of the LOC parameters.
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where:
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4. Experimental results:

The laboratory-based process control system is Bytronic Process Control Unit (PCU),
which is based around a fluid flow process, where either or both flow and temperature
of the fluid can be controlled.
This reflects a typical process control situation such as in the food and drink
manufacturing and petrochemical industry [8]. In this system a fluid is pumped in a
closed path from a sump through a cooling fan to a process tank where the fluid is
heated and then is drained back to the sump. The overall view of the Bytronic PCU is
shown in Figure (2).
The Bytronic PCU is a 2-input 2-output system. The inputs are the voltage to the pump
and the power to the heater. The outputs are the fluid flow rate and the fluid
temperature.
In this section, the multivariable PID controller parameters will be tuned using the
relations deduced from the LOC. As such, the model parameters for the predefined
structure in (7) and (8) should be identified, then adjusting the tunable parameters h1, h2

the PID controller parameters are obtained.
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Figure (2): The overall view of Bytronic PCU test rig.

4.1 Open loop system identification:

In this subsection; the approach explained in [3] is used to identify the multivariable
model parameters. In this approach, two subsystems are investigated according to the
number of outputs.
The first subsystem is SISO system. The input is the voltage to the pump, and the output
is the flow rate. The second input which is the input power to the heater has no effect on
the flow rate. For this subsystem, the model parameters for the second order model
structure given in (8) are identified as explained in [3] using chirp and multi-sine inputs
for open loop system identification.
The identified model parameters are:

a11= −1.25,      a12= 0.4272,       b11= 0.0374.                               (28)
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The second subsystem is 2-input single-output system. The inputs are the input voltage
to the pump and the input power to the heater, and the output is the fluid temperature.
For this subsystem, the model parameters for the predefined model structure in (7) and
(8) should be identified.
The system identification toolbox of Matlab [9] is used to identify the model
parameters. The inputs for open loop system identification are chirp or multi-sine for the
first input and multi-step for the second input [3]. The multi-step for the second input is
due to the relatively high time constant of the heater. The model parameters are given in
(29).

a21= −0.4903,  a22= −0.5095,  b21= 9.3430 × 10−4,  b22= 9.56 × 10−5. (29)

4.2 Tuning of multivariable PID controller parameters using LOC:

Using the multivariable model parameters given in (28) and (29) and the tuning
parameters (h1=5, h2=10), the PID controller parameters can be obtained from equations
(22), (23), (24), and (25).
The multivariable PID controller parameters are listed below.

P11 I11 D11

P12 I12 D12

P21 I21 D21

P22 I22 D22

K =2.75, K =0.6685, K =1.4278,

K =0, K =0, K =0,

K =-26.8758, K =-6.5328, K =-13.9540,

K =1307.2699, K =130.72, K =-666.1872.

                                               (30)

Figure (3) and Figure (4) show the two output responses of the PID controlled system
when the controller parameters used are those obtained above from the model-based
LOC. In these figures, the reference input for the flow rate is changed from 0.8 to 1.2
l/min at t = 500s and the reference input for the fluid temperature is changed from room
temperature to 60oC at t = 20s. The oscillations for the output temperature (60 ± 1) are
due to the sensor sensitivity.

4.3 System control using genetically tuned PID:

To design PID controller for the multivariable system under consideration, a full matrix
of digital PID controllers is used as expressed in (31).

1 111 12
11 11 12 121 1
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21 21 22 221 1

(1 ) (1 )
1 1( )

(1 ) (1 )
1 1

I I
P D P D
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z zC z
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z z

 
 
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 

          
          

                         (31)
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Figure (3): The first output response (flow rate) of the multivariable system controlled
by Digital PID tuned using model-based LOC.

Figure (4): The second output response (fluid temperature) of the multivariable system
controlled by digital PID tuned using model-based LOC.

A GA program is used to tune the twelve controller parameters represented in (31)
through minimizing the Mean Squared Error (MSE) between the reference input and the
system’s output and to have no overshoot as multi-objective function [10–12]. These
twelve controller parameters are listed in (32).
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P11 I11 D11

P12 I12 D12

P21 I21 D21

P22 I22 D22

K  = 3.0831, K  = 1.0109, K  = 5.0335;
K  = 4.6583, K  = 0.0064, K  = 2.6325;
K  = 0.7092, K  = -5.8304, K  = -0.0541;
K  = 0.6151, K  = 8.5757, K  = -2.6268.

(32)

Figure (5) and Figure (6) show the two output responses for the real system using
genetically tuned PID controller, where the reference input for the flow rate is changed
from 0.8 to 1.2 l/min at t = 500s and the reference input for the fluid temperature is
changed from room temperature to 60oC at t=20s. The oscillations for the output
temperature (60±1) are due to the sensor sensitivity.

Figure (5): The first output response of the multivariable system controlled by the
genetically tuned PID.

Figure (6): The second output response of the multivariable system controlled by the
genetically tuned PID.
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From these figures, the output responses obtained are similar to those obtained
previously in Figure (3) and Figure (4). The advantage of tuning multivariable PID
controller parameters using LOC over the genetically tuned PID is that the multivariable
PID controller can be used in automatic mode based on the on-line model parameters
identification.

5. Conclusions:

Based on LOC, a new tuning technique of digital PID controller parameters is
introduced for multi-variable systems. Certain predefined model structures are used to
deduce the relations between PID controller and LOC.
For multivariable systems, the model-based LOC is used to find the multivariable PID
controller parameters. The results obtained are similar to those obtained using GA-tuned
PID. The experimental results confirm the effectiveness of the new tuning technique.
As the multivariable PID controller parameters in this tuning technique are functions of
the model parameters, which are constants, and one tunable parameter h for each output;
this tuning method reduces the tuning parameters of the PID controller. For n×n system,
the tuning parameters for conventional tuning methods are 3n2. These tuning parameters
are reduced to only n using the new tuning technique.
This tuning method transforms the PID controller to a model-based controller, so it can
be used in automatic adaptation mode based on the on-line system identification.
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