
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١

١

Military Technical College

Kobry El-kobbah,
Cairo, Egypt

5th International Conference

on Electrical Engineering
ICEENG 2006

Binary Space Partitioning algorithm for the navigator agent in the Virtual

Environment
Khaled Elmenshawy, Ismail Abd-Elghafar , Ali Ali Fahmy

ABSTRACT
Virtual environment can be brought to life by adding walking characters (navigator agent)

to enhance the navigation process. The navigator agent helps the visitor to find specific locations
in the virtual environment. It is specialized in determining appropriate free and safe paths through
the virtual environment, and can provide guidance to the user that tries to follow such paths. Path
finding depends on a number of waypoints to be set out in the virtual environment. The navigator
agent receives an initiation message from the headquarter agent depends on the reaction of the
watching agent and sends a request to the navigation module to plan the shortest and safe path.
This paper discusses the development of a real-time navigation algorithm for the navigator agent
as a guide tour through the virtual environment. The algorithm is handled by two channels. The
first is the 3D Graph, which contains all nodes and path structure information. The second is the
Motion Planning channel, which calculates the fastest route through the path structure from the
current position to a destination position. This algorithm is called Binary Space Partitioning
Algorithm (BSP). BSP divides the 2D map of the Virtual Environment into two configurations or
more depending on the start and destination locations, after that it generates two trees, one from
the initial side (Tstart) and the second from the destination side (Tgoal). The navigator agent uses
join algorithm to connect these trees together. A path is found when the two trees can be
connected. Finally, the navigator agent provides two choices for the user, the first one it draws a
generated path on the scene, then the user follow this path or, the second choice is the navigator
agent calls the animation algorithm to move on the path as a tour guide for the user. The time has
been taken to explore the virtual environment by using the Binary Space Partitioning algorithm is
decreased approximately by the half compared by the traditional motion-planning algorithms.

Key words
Virtual Environment, navigator agent, watching agent, headquarter agent.

1. Introduction
 The proposed model of the embodied agents in the synthetic Virtual Environment consists
of five agents. The first agent is a watching-agent. This agent works as interface agent. It
observes the interaction between the user and the VE from the sideline learns from it and interacts
with the controller agents through headquarter-agent so we called it a Watching-agent. The
second agent is a headquarter-agent, it works as a supervisor agent, and it is a mediator agent
between the higher level agent (watching-agent) and the lower level of the working agents. It

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٢

٢

stores the dynamically information about the VE. It sends this information to the working agents
group. The third agent is the position-tracker agent. It is used to determine the position of the
navigator agents in the synthetic VE. It stores the status of each break-point, edge and path in the
VE. The fourth agent is the object-identifier-agent. It is used to keep track of the changes of the
dynamic objects in the VE. Finally, the fifth agent is the navigator-agent. It is the moving agent
that helps the visitors of the VE to find their interested way. In this paper, new real-time
navigation algorithm is developed for the navigator agent. The navigator agent can Sense, interact
the objects that make up the spatial layout of the world and Communicate with any other agents
situated in the VE.
Intelligent navigator agents are added to the Virtual Environment Browser to enhance the
navigation process. Autonomy is necessary to enable the agents to explore the VE in the absence
of continuous instructions by the user. The agent is able to engage in complex communication
with other agents, including people, in order to obtain information or enlist their help in
accomplishing its goals [5].

2. Related Works

The motion planning problem has been extensively studied in the past two decades. A good
survey of motion planning algorithms is in [6]. In the recent years a new path-planning scheme
called random sampling scheme for path planning was proposed. A special version of planner
with this random sampling scheme is called the probabilistic roadmap method [7]. In this
method, a significant amount of time is spent in preprocessing the connectivity information of the
configuration space such that it can answer path-planning queries afterward in a short amount of
time. The sampling approaches introduced in [7] consist in first sampling the configuration space
with collision-free configurations and trying to link them by collision-free paths computed with
the steering method. This so-called learning phase builds a graph (roadmap) whose connected
components tend to capture the connectivity of the topological space. A given problem is solved
in a so-called query phase: both starting and goal configurations are added as new waypoints of
the roadmaps; then the existence of a collision-free local path between and the existing roadmap
waypoints is checked. Finally the search is per-formed by a graph search algorithm. Any existing
path in the graph corresponds to an admissible motion. This type of planner is good for
applications where static environments can be assumed and several planning queries are needed.
The Probabilistic Road Map method (PRM) is suited for very complicated environments.
Unfortunately, the roadmap produced by this method can be rather wild, leading to ugly paths
that require a lot of time-consuming smoothing to be useful for gaming applications. PRM
algorithm is evaluated by using a dynamic roadmaps for on-line motion planning in
 changing environments. When changes are detected in the workspace, the validity state of
 affected edges and waypoints of a pre-computed roadmap are updated accordingly. a
randomized path planner is used as a part of simulated environment for providing high level
software control of humanoid robots.[8] Another approach is applied by using a hybrid Artificial
Potential field to resolve the two component problems of getting agent to its goal and avoiding
any obstacles in the process.[11]Un-fortunately, most randomized or optimization driven path
planning algorithms can be expensive in particular environments, and may even fail to reach the
goal state. The problem of Motion Planning for various types of moving agents was widely
investigated by many researchers despite the success of the Probabilistic Road Map framework,
work has mostly concentrated on static environments. [1], [2], [9]

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٣

٣

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٤

٤

initiate path-planner safe path

3. Behaviors of the Navigator agent

The navigator agent receives an initiation massage from the headquarter agent and sends a

request to navigation module as shown in fig.1. The navigation module is responsible for
planning the shortest and safe path to the navigator agent from the start to the goal position
according to user’s choice. After the navigation module completes its plan, it sends a safe path to
the navigator agent to follow it. The navigator agent model composed of capabilities, plans,
databases, and events. Agents can address other agents and post events to them thus modeling
inter-agent communication.

Events Events are those things that an agent responds to. They arise internally to
an agent as reasoning progresses, as a result in a change in the agent’s
beliefs, or on receipt of a communication from another agent.

Plan A plan is a specification of a sequence of actions to undertake in response
to an event.

Capability Capabilities are sets of plans, events, and databases that are functionality
grouped to provide a specific capability to an agent.

Database The Database is the implementation of the beliefs of the agent.

Fig.1. the navigator agent calls the navigation module to activate path-planner

The navigator-agent has its own capabilities to perform its tasks. It executes different plans
according to different situations as shown in fig.2.

 #handles event Headquarter_Request
 #handles event Modification_2Dworld
 #handles event surface_contacts
 #uses plan RestrictedArea
 #uses plan Free_Space
 #uses plan MoveToNextBreak-point
 #uses plan Building_Navigation_Map
 #uses plan Tracing_Agents

navigator
 agent

Binary Space Partitioning
Algorithm

Headquarter
agent

Queries Requests

follow path

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٥

٥

 #uses plan Surface_following
 #private data Board Messages_Controller()

Fig.2. The Architecture of the Navigator Agent’s role

Navigation module plays an important role in formulating proper paths to reach a
destination point. Often the agent must deviate from its intended course to negotiate obstacles
that are in its path. After the maneuver has been made, the agent may find that it has strayed in a
direction farther away from it goal. In this case the agent must take corrective actions to move
towards its goal. A fitness function may be used to determine how well the agent is meeting its
goal of navigating to an assigned waypoint. The Navigator-Agent communicates with the
headquarter-agent by using KQML languages. Table (1) represents different messages transferred
between the navigator agent and the headquarter-agent, which define the agent’s actions in the
VE:

Table (1) messages transfer between the headquarter-agent and the navigator

Message Action

RegisterAgent
Message

Registers a new navigator agent in the VE.

RegisterTimeE
ventMessage

Registers any Time which can be used to
start/Stop agent-specific animations.

MovePlanMess
age

Moves the agent between different waypoints
and edges after using MoveToNextBreak-
point plan.

SetRotationMes
sage

Changes the agent’s orientation in the VE as
defined in the message parameters.

StartAnimation
Message

Starts an agent specific animation.

ObstacleDetecti
on

Starts an agent specific obstacle response
plan.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٦

٦

WaitAnimation
Message

Stops an agent specific animation for certain
period of time.

GoalRequired
Message

Agent accomplishes its tasks.

LocalMapBuild
erMessage

Agent rebuild its local navigation map
according to the changes occurred in the VE.

LocalMapRequ
estMessage

To be sent when the agent builds its local
navigation map

PerceptionReq
uestMessage

Notifies the headquarter-agent to send the
locations of other navigator agents or the
moving obstacles when it is equipped a break-
point or the edge.

Surface Following plan
The ability to follow the surface during the navigation process is a requirement for all Virtual
Environment Browsers as it is needed to accomplish a basic ‘Walk’ type of navigation. If an agent
is to simulate this type of navigation where the surface is a variable one, `some kind of a
Constrained Surface Movement will be required.[11] Once a path has been found between the
desired start and destination configurations, the path is rendered for the user and also provides an
automatic navigation function that propels the avatar along that path.
Collision Detection Plan

Collision Detection is another plan that is required in agent navigation. In [30] the authors
describe a collision detection algorithm, which has been built into Virtual Reality Modeling
Language Browsers. (VRML)
Object/Object collision detection plan

For each object/object pair
 Draw the smallest non oriented box to surround each object in the pair

 For each member of the pair
 If any vertex of this object’s box

 Then collision is true
 Endif

 Next member
Next Pair

Agent/Obstacle collision detection plan

For each agent in the VE
Draw the smallest non oriented box around the agent
For objects within range of the agent

 Draw the smallest non oriented box around the object
If any vertex of this object’s box is within the bounds of the agent’s
box or If any vertex of the agent’s box is within the bounds of this
object’s box Then collision is true

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٧

٧

 Endif
Next object

Next agent

3.1 The navigation path planner

Any path-planning algorithm must be based on a representation of the free space of the
environment’s model. In order to navigate through the VE, the navigator agent must use the
navigation map that is created after excluded the static obstacle regions. The navigation map
would be changed if any changes occur in the VE. The navigation map is normally represented as
a graph in which the waypoints correspond to placements of the agent and the edges represent
collision-free paths between these placements and can be written as G = (V,E), fig.3. illustrates an
example of the 2D-Environment consists of 2500 obstacles.

Fig.3 an example of 2D-Environment consists of 2500 obstacles

4. Building the navigational map

The following steps are used to generate the navigational map from the 2D environment as shown
in fig.4.

• The 2D map of the VE is divided into two configurations or more depending on the Start
and destination locations by using horizontal or vertical straight lines. The steps are
described in fig.4.

• Applying the Bi-Directional Single Query Probabilistic Navigation map. It uses the two
input query configurations to explore little space (bi-directional) it explores the navigator
agent’s free space by building a navigation map made of two trees rooted at the start and
Goal query configurations. We grow two trees from Start and destination, respectively.
We choose the waypoints that are most likely to see a large portion of the free space.

• Applying Join algorithm to connect the two navigation maps together. A path is found
when the two maps can be connected.

• Applying smoothing algorithm to improve a generated path.
• Follow the generated path.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٨

٨

Fig.4. steps for developing the Navigation path
The navigation map is used to allow the agent to navigate through any large environment.
The environment is specified in terms of geometric primitives and their connectivity. The
agent is allowed to navigate in the environment in two modes:

• The Global mode: In this case, the user determines the start and goal locations in
the environment. The algorithm automatically computes a safe collision free path
that satisfies the motion constraints.
• The Local mode: The user is allowed to explore the environment in a driving
mode, where the agent responds to transnational and rotational inputs from the
user. The algorithm automatically performs collision checks with the environment
and constrains the agent to terrain surfaces in the environment.

 2D-Map of the VE

Binary Space Partitioning Algorithm

Connection Algorithm

Building Bi-Direction Navigation map

Smoothing algorithm

Shortest path

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

٩

٩

Yes

No

No

Yes If the start and
Destination on the
same vertical line

Divide the configuration
Space into 2 parts by

horizontal line

If the start and target
on the same horizontal

line

Read the Coordinates of start
& Destination positions

Divide the configuration
Space into 2 parts by

Vertical line

A

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١٠

١٠

Fig.5. Binary Space Partitioning algorithm

The next section describes the preparation phase of creating the navigation map of possible
motions of the agent(s) from the 2D-map of the VE.

4.1 Preparation phase

During the preparation phase, a global navigation-map of the synthetic VE is created. This

is randomly done by generating collision-free configurations of the agent in the scene depending
on the knowledge of the Position-Tracker-agent. The interested points (break-points) are
connected to each other by using a local planner that enforces our constraints including collision
detection using a bounding box hierarchy. We also prune the graph to reduce the redundancy of
coverage or reach-ability over the entire walk-able space. The obtainable navigation map is a
global data structure that is used at runtime to navigate the user through the environment.

NO

If the coordinates of
start and target

positions greater or
less than mid line

Generate Bi-directional
navigational map

(Start & destination)

Store the coordinates of the
mid line.

A

Yes

Divide the configuration
Space into 2 parts left /right
depends on the start and goal

positions

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١١

١١

٣

4

Add Start &
Goal Locations

4.2 Execution phase

At execution phase, the user specifies the start and goal position. The algorithm searches the
navigation map graph using any search algorithm such as Dijkstra’s algorithm and performs
connected component analysis to improve its performance. The user navigates along the computed
path. Given the collision-free and constrained path, a few viewing options including path
alignment are available to the user. When a break-point or edge has a reference counter
 greater than zero, it is considered not safe and thus not allowed to be traversed during the
 graph search procedure . The combination of these techniques enables the user to navigate
automatically through the complex environment. The algorithm also allows the user to navigate
any part of the environment in a driving mode. The user can also stop at any point of interest and

7 6

5

2 1

Send a message to a Navigator Agent

Fig.6. Phases of Generation a navigation map by using PRM
S d i A

BSP
algorithm Local Planning

Pass
Generation of

Navigation Map

Apply Search
algorithm

Collision safe
path

Path-Following
message

Apply Local
Walk

Algorithm

Pass
Pass

Run-Time phase

Pass

Global-Navigation
Map

 2D-Map of VE

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١٢

١٢

No

control his movement to inspect a particular location within the environment. Our algorithm
provides the user with both local control and global navigation in a large environment.

5. Building Bi-Direction Navigation map

BSP generates two trees, Tstart and Tgoal, respectively rooted at the start (S) and the goal location
(G.) while the waypoints set is not empty, the Append and the join procedures are executed:
APPEND which adds a break-point to one of the two trees, while JOIN tries to connect the two
trees. BSP returns failure if it has not found a solution path. In this `case, either no solution path
exists between S and G, or the planner failed to find one. BSP has two parameters
n: the maximum number of waypoints that is allowed to generate,
d is a distance threshold. Two configurations are considered close to one another if their
distance is less than d.

Tstart= S

Tgoal = G

If the numbers
of the generated
waypoints (n)

Append a new waypoint in the
path’s tree

Join Tstart and Tgoal

into Path

No

If path ≠
empty

yes

yes

N = n +1

No path found

Return
path

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١٣

١٣

The generated path consists of straight line segments; following such a path will have
discontinuities at the connector break-point that cause sudden directional changes to an agent that
follows the path. Next section describes the steps have been taken to resolve this problem

5.1 Discontinuity removal

In order to solve this problem we will replace parts of the straight line edges by circular

arcs. The degree of a connector break-point is defined as the number of edges that is connected to
this break-point. If a break-point has degree 1, it is an endpoint of a path segment, and no circular
arc needs to be added. If a break-point has degree 2, the addition of the circular arc is
straightforward. We find the centers of the two edges, and use these to create a circle arc that
touches both edges A and B. Let m be the midpoint of A and let n be the midpoint of B. We
replace part of the path between m and n by a circle arc that lies in the plane spanned by the two
edges. This arc will have its center on the bisecting line of A and B, will touch A and B and have
either m or n on its boundary, depending on which one lies closer to the break-point v. As the arc
touches the two edges it will remove the first-order discontinuity at break-point v. Since the arc
will only remove at most half of the edges A and B, we can repeat this for each break-point on
the path. The obtainable path will be C1 continuous fig.8-a. If the degree of a vertex v is higher
than 2, we find the centers of all incoming edges fig.8-b.

 (a) (b)

Fig.8. Circular arc between two and three edges

6. Experimental Results

Binary Space Partitioning algorithm is developed by using Java and VRML97 [4]. It is tested for
different synthetic Virtual environment with different obstacles numbers and shapes. The first
experiment compares the proposed BSP algorithm with three other planners: Potential field [12],
visibility graph [2], and exact cell decomposition [12]. The results are shown in Table (2)

A

m

n
B

v

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١٤

١٤

Table (2) Comparison between three different algorithms with the BSP algorithm

No of
Obstacles

Roadmap
(Visibility

graph)

Potential
Field

exact cell
decomposition

Proposed
Algorithm

BSP
1 23.2 25.6 24.5 16.53
5 23.2 28.3 25.6 16.53

10 25.9 33.5 28 17.64
15 28.12 38 32 18.456
20 28.12 40 33.5 18.456
25 31.41 41.6 36.2 20.18
30 34.84 44.8 39.4 21.48
100 79.16 88.8 83.12 37.38

Figure (9) shows the performance of the BSP Algorithm comparatively to different planners. The
fastest algorithm is BSP, it is approximately worth the half time of the visibility graph since the
idea of the BSP algorithm is based on the same idea of the visibility graph but it uses two tree of
building the navigation map in addition to set of algorithms to enhance the path quality. These
performance measures were taken on a 500MHz Intel Pentium III, 256M RAM, under Win XP.

The efficiency of the BSP algorithm according to different three planners

0

20

40

60

80

100

1 5 10 15 20 25 30 100
number of obstacles

tim
e(

se
c) Visibility PRM

Potential Field

exact cell
decomposition
Proposed
Algorithm BSP

Figure (9) the performance of the binary space partitioning algorithm

7. Conclusion and future work

In this paper a new motion planning algorithm (BSP) is used to build the navigation map to assist
the visitors of the VE. Motion Planning has been studied for several decades, and many motion
planning algorithms have been presented. Therefore, research in motion planning remains one of
the important fields of study in the task of building robot systems. Computation of a collision-free

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١٥

١٥

path for the navigator agent in a dynamic environment is a fundamental subject in many fields.
Choose the right navigation architecture:

1. Improve quality of the behaviors
2. Increase performance
3. Make it easier for Agents to integrate in the navigation system

the navigator agent observes the environment, maintain an internal representation of the world,
make decision and perform tasks. the navigator agent provides two choices for the user, the first
one it draws a generated path on the scene, then the user follow this path or, the second choice is
the navigator agent calls the animation algorithm to move on the path as a tour guide for the user.
The time has been taken to explore the VE by using the Binary Space Partitioning algorithm is
decreased approximately by the half compared by the traditional motion-planning approaches. The
benefit of usage the agents is to prevent the collision between the user, obstacles and other agents.
For the future work we plan to study the performance of the proposed algorithm for multi-user
virtual environment cluttered with moving obstacles. Developing a new algorithm for the
navigator agents work in a dynamic Virtual Environment taking into account the prediction of
moving obstacles.

References

[1] Ashraf Elnagar, Leena Lulu., A global path planning Java-based system for autonomous
mobile robots, Elsevier, science of computer programming, (2004).
[2] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind M.H. Overmars., Automatic Construction
Of Roadmaps For Path Planning In Games, (2004).
[3] Igarashi, T., Kadobayashi, R., Mase, K., and Tanaka, H, “ Path drawing for 3d walkthrough”.
In Proc. of UIST, 173–174, (1998).
[4] Chan Su Lee and Grigore C. Burdea Virtual Reality Technology Second Edition Laboratory
Manual, The State University of New Jersey U.S.A, John Wiley &Sons, (2003).
[5] J.Muller., The Design of Intelligent Agents, A Layered Approach, volume 1177 of Lecture
Notes in Artificial Intelligence, Springer-Verlag, (1996).
[6] J. Latombe, Robot Motion Planning, Kluwer Academic Publishers Boston, (1991).
[7] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars., Probabilistic Roadmaps for Fast Path
Planning in High-Dimensional Configuration Spaces, IEEE Transaction on Robotics and
Automation, 12:566-580, (1996).
[8] Léonard Jaillet & Thierry Siméon., A PRM-based Motion Planner for Dynamically Changing
Environments, (2004).
[9] Marcelo Kallmann, Maja Matarić: “ Motion Planning Using Dynamic Roadmaps, in
proceedings of the IEEE international Conference on Robotics and Automation (ICRA), 2004.
[10] Ruth Aylett and Marc Cavazza., Intelligent Virtual Environments - A State-of-the-art
Report, University of Salford, CVE, Salford; University of Teesside, School of Computing and
Mathematics, (2004).
[11] Julien Burlet, Olivier Aycard and Thierry Fraichard., Robust Motion Planning using Markov
Decision Processes and Quadtree Decomposition, IEEE Int. Conf. on Robotics and Automation,
New Orleans, LA (US), (2004).
[12] Steven M. LaValle., Planning Algorithms, Combinatorial Motion Planning, chapter 6,
University of Illinois, (2004).
 [13] Tim Batchelor Hnd., ANTS: Automatic Navigation of Terrain Systems, Alumnus of Bolton
Institute, (2003).

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 13 -

١٦

١٦

[14] Zhukov, A Iones., Building the navigational maps for intelligent agents, Elsevier Science,
computers& graphics 24,pp 79-89, (2000).

