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Abstract 
 
Many systems of interest involve phenomena that exhibit unpredictable variation and 
randomness. For example, communication systems must provide continuous and error free 
communication over channels that are subject to random noise.  Probability models are one of 
the tools that enable the designer to successfully build systems that are efficient and reliable. 
Processing of random signals postulates a probability model that is defined by the probability 
density function of the random signal. In this paper, we propose a method to determine the 
goodness of fit of a distribution to a set of experimental data. The proposed method depends 
on the chi-square test. It is applied to different examples of different probability density 
functions. The proposed method is proved to be efficient. 
 
Keywords    Probability density function – Fit of a distribution to data –  
                       Probability models – Histogram of random variables. 
 

 

1.   Introduction 
 
A model is an approximate representation of a physical situation. It attempts to explain 
observed behavior using a set of simple and understandable rules. These rules can be used to 
predict the outcome of experiments involving the given physical situation. There are two 
main types of models; deterministic models and probability models [1]-[5]. In deterministic 
models the conditions under which an experiment is carried out determine the exact outcome 
of the experiment. In deterministic mathematical models, the solution of a set of mathematical 
equations specifies the exact outcome of the experiment. Circuit theory is an example of a 
deterministic mathematical model. Circuit theory models the interconnection of electronic 
devices by ideal circuits and predicts the observations. In practice there will be some variation 
in the observations due to measurement errors. Nevertheless, this deterministic model will be 
adequate as long as the deviation about the predicted values remains small. 
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Many systems of interest involve phenomena that exhibit unpredictable variation and 
randomness. We will define a random experiment to be an experiment in which the outcome 
varies in an unpredictable fashion when the experiment is repeated under the same conditions. 
Deterministic models are not appropriate for random experiments since they predict the same 
outcome for each repetition of an experiment. The probability models are intended for random 
experiments.   
 
Communication systems must provide error-free communication over channels that are 
subject to random interference and random noise [10, 11]. Many communication systems 
operate in the following way. Every T seconds, the transmitter accepts a binary input, namely 
a  0  or a  1, and transmits a corresponding signal. At the end of the T seconds, the receiver 
makes a decision as to what the input was; based on the signal it has received. Most 
communications systems are unreliable in the sense that the decision of the receiver is not 
always the same as the transmitter input. Thus, transmission errors  occur randomly with 
probability ε. The optimum receiver structure at the receiver depends on a postulated 
probability model, which in many cases defined by the probability density function of the 
observed random signal. If the observed random signals and the postulated probability density 
functions are in good agreement, then we have a good fit; otherwise the receiver will be far 
away from its ideal performance. So an important question arises: How well does the model 
(the postulated probability density functions) fit the data (the received random signals)?.    
 
 

2. Chi-Square Probability Density Function   
 
The cumulative distribution function (cdf) of a random variable X is defined as the probability 
of the event }{ xX ≤  [1, 6, 9]: 

∞+<<∞−≤= xxXPxFX for],[)( ,      (1) 
that is, it is the probability that the random variable X  takes on a value in the set ( ∞− , x ). 
The probability density function of X  (pdf) is defined as the derivative of )(xFX : 

dx
xdFxf X

X
)()( =  .          (2) 

The pdf represents the density of probability at the point x  in the following sense: The 
probability that X  is in a small interval in the vicinity of x , that is, }{ hxXx +≤<  is 

h
h

xFhxFxFhxFhxXxP XX
XX

)()()()(][ −+
=−+=+≤< .    (3)  

If the cdf has a derivative at x , then as h becomes very small,  
hxfhxXxP X )(][ ≅+≤< .                                                               (4) 

The probability of an interval [a, b] is 

∫=≤≤
b

a
X dxxfbXaP )(][ .         (5) 

The probability density function of the gamma random variable has two parameters   
0>α and 0>λ , and is given by 

)(
)()(

1

α
λλ λα

Γ
=

−− x

X
exxf  ,       ∞<< x0 ,                 (6) 

where )( zΓ is the gamma function, which is defined by the integral [7, 8, 12]: 
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 ∫
∞

−− >=Γ
0

1 0,)( zdxexz xz .       (7) 

The pdf of the gamma random variable can assume a variety of shapes. By varying the 
parameters α  and λ it is possible to fit the gamma pdf to many types of experimental data. 
By letting  λ =1/2 and α =ν /2, where ν  is a positive integer, we obtain the chi-square 
random variable with ν  degrees of freedom, which appears in certain statistical problems. 
The pdf of the chi-square random variable with ν  degrees of freedom is then given by [2, 5]: 
 

0,
)2/(2/2

2/2/)2(
)( >

Γ

−−
= x

xex
xXf

νν

ν
 .      (8) 

3. Chi-Square Test 

   

Suppose you have postulated a probability model for some random experiment, and you are 
now interested in determining how well the model fits the experimental data. In other word: 
How well does the model fit the data?  In general, the mean and variance of a random variable 
do not provide enough information to determine the cdf/pdf.  
 
In this section we use the chi-square test to determine the goodness of fit of a distribution to a 
set of experimental data. The chi-square test contain the following steps: 
 
Assume that the random variable X  has the postulated pdf . 
Partition the sample space xS  into the union of  K  disjoint intervals. 
Compute the probability kb that an outcome falls in the thk interval under the assumption that 
X  has the postulated pdf. 
The expected number of outcomes that fall in the thk interval  in n repetitions of the 
experiment is then:  

kk bnm =  .           (9) 
The chi-square statistic is defined as the weighted difference between the observed number of 
outcomes, kN , that fall in the thk interval, and the expected number km : 

∑
=

−
=

K

k k

kk

m
mN

D
1

2
2 )(

 .         (10) 

The chi-square test is based on the fact that for large n , the random variable 2D  has a pdf 
that is approximately a chi-square pdf with  ν  degrees of freedom. 
( ν =K-1) 
6-  If the fit is good, then  2D  will be small.   
7- The hypothesis is rejected  if 2D  is two large, i.e. , if 
     αtD ≥2 ,           (11)  

      where αt  is a threshold determined by the significance level of the test. The  threshold 

αt   can be computed by finding the point at which  
αα =≥ ][ tXP  ,                                                                                                                    (12) 
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where X  is a chi-square random variable with ν  degrees of freedom ( 2
,ναχ ).The thresholds 

for different values of significance levels and various degrees of freedom are found in Tables 
(see [2, 5, 9] and Table 1  for examples). For example, from Table 1, it is clear that the 
threshold for a 0.99 significance level and  degree of freedom =30 is 14.954.  
 

                  Table 1: Critical Values 2
,ναχ  ( 2D ) for the Chi-Squared Distribution                                        

α  
ν  0.995 0.990 0.975 0.10 0.05 0.005 
2 0.010 0.020 0.051 4.605 5.992 10.597 
5 0.412 0.554 0.831 9.236 11.070 16.748 
10 2.156 2.558 3.247 15.987 18.307 25.188 
20 7.434 8.260 9.591 28.412 31.410 39.997 
30 13.787 14.954 16.791 40.256 43.773 53.672 
40 20.706 22.164 24.433 51.805 55.758 66.766 

 

4. Applications of the Chi-Square Test to Different  

           Probability Density Functions 
 
In this section we simulate different probability density functions (experimental data) and 
compare them with the corresponding theoretical probability density functions. In each 
example, the histogram is obtained by generating 1000 samples of the random variables of the 
desired pdf. There are many ways of selecting the intervals in the partition, and that these can 
yield different results. The following rules of thumb are recommended. First, to the extent 
possible the intervals should be selected so that they are equiprobable. Second, the intervals 
should be selected so that the expected number of outcomes in each interval is five or more. 
This improves the accuracy of approximating the pdf of 2D  by a chi-square pdf. In our 
examples, the histogram is obtained by dividing the real line into 30 intervals of equal 
lengths.  We can also divide the real line into 30 intervals of equal probability.    
 
The discussion so far has assumed that the postulated distribution is completely specified. In 
the typical case, however, one or two parameters of the distribution, namely the mean and 
variance, are estimated from the data. It is often recommended that if  r  of the parameters of a 
pdf are estimated from the data, then 2D  is better approximated by a chi-square distribution 
with  K – r – 1  degrees of freedom. In effect, each estimated parameter decreases the degrees 
of freedom by  1. 
A narrow-band noise )(tn  can be represented in terms of its envelope and phase components 
as follows: 
                                )](2cos[)()( ttftrtn c φπ +=  ,                                                          (13) 
where the function )(tr is called the envelope of )(tn , the function )(tφ is called the phase of 

)(tn , and cf  is the nominal carrier frequency.  By letting R  the random processes 
represented by the envelope )(tr , the probability density function of the random variable R  
will be [12]: 
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⎪
⎩

⎪
⎨

⎧
≥−

=

elsewhere,0

0),
2

exp()( 2

2

2 rrr
rfR σσ ,                                                              (14) 

where 2σ  is the variance of the original narrow-band noise )(tn . A random variable having 
the probability density function of Eq. (14) is said to be Rayleigh-distributed random variable. 
If we suppose that we add the sinusoidal wave )2cos( tfA cπ to the narrow-band noise )(tn , 
where A  and cf  are both constant, a sample function of the sinusoidal wave plus noise is 
then expressed by: 
                                           )()2cos()( tntfAtx c += π   .                                                      (15) 
We assume that the frequency of the sinusoidal wave is the same as the nominal carrier 
frequency for the noise. In this case, the probability density function of the random variable 
R  will be [12]: 

                                     )()
2

exp()(
202

22

2 σσσ

rA
I

Arrrf R
+

−=  ,                                       (16) 

where )(0 xI  is the modified Bessel function of the first kind of zero order and is defined as: 

                                     ∫=
0

2

0 )cosexp(
2
1)(

π

φφ
π

dxxI    .                                                 (17) 

The form of the probability density function of Eq.(16) is called the Rician distribution . 
 
Figure 1 shows the plot of 1000 random variables of Rayleigh distribution (experimental 
samples). It is assumed that both the theoretical and experimental probability density 
functions are Rayleigh distributed random variables. Figure 2 shows the histogram of the 
Rayleigh random variables of the experimental samples. Figure 3 shows the theoretical 
probability density function. Figure 4 shows the experimental probability density function and 
compares it with the theoretical probability density function. It is clear that the theoretical 
probability density function is highly fitted the experimental probability density function. In 
our example, 2D  is 0.371 using a 1000 samples of the random variables and 30 equally 
disjoint intervals. Since the number of intervals is 30, then it is recommended to choose the 
degree of freedom to be 29 (ν = K-1 = 30 – 1). By comparing the value of 2D  with the table 
of the Chi-squared distribution [1,12] for ν =29, we conclude that the data is consistent with 
more than 99.5 % significance level.  
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Similar results are obtained in case of Chi-square, Rician, non-central Chi-square, uniform 
and Gaussian probability distribution functions. Figures 5 - 8 show the results in case of 
Rician probability density functions. In these figures, It is assumed that both the theoretical 
and experimental probability density functions are Rician distributed random variables. In this 
case, the value of 2D  for 29 degrees of freedom  is 7.8833. By comparing the value of 2D  
with the table of the Chi-squared distribution [1,11] for K=29, we conclude that the data is 
consistent with more than 99.9 % significance level.  
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Table 2 compares the values of the first two moments (E{X}, E{(XE{X}) 2 }) of the 
theoretical and experimental probability density functions. The results show that the data is in 
good agreement with the Rayleigh and Rician distributions. The dependence of the weighted 
difference ( 2D ) on the number of simulated random variables (samplers) is shown in Figure 
9. As shown in Figure 9, The value of the Chi-square weighted difference decreases as the 
number of simulated samples increases, i.e. the accuracy of Chi-square goodness of fit 
increases as  the number of experimental data increases (expected result if the postulated pdf 
were correct). 
 
   Table 2: Comparison of the moments in case of Rayleigh and Rician distributions 
 

 
Rayleigh 
 

 
Rician 

 

 
Theoretical 
 

 
Experimental 

 
Theoretical 

 
Experimental 

Mean (m) = 
E{X} 

 
1.2533 
 

 
1.2320 

 
5.1003 

 
5.0818 

Var{X}= 

E{(X-m) 2 } 

 
0.4292 
 

 
0.4275 

 
0.9801 

 
0.9142 
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Also we considered an example when the postulated probability density function does not fit 
the experimental data. It is assumed that the theoretical probability density functions is 

Rayleigh distributed random variables with 2σ =1, while the experimental probability 

density functions is Exponential distributed random variables with 2σ =1 and. Figure 10 
shows the experimental probability density function and compares it with the theoretical 
probability density function. It is clear that the theoretical probability density function  
(Rayleigh distributed random variables) does not fit the experimental probability density 
function (Exponential distributed random variables). In our example, 2D  is 132.8 using a 
1000 samples of the random variables and 31 equally disjoint intervals. By comparing the 
value of 2D  with the tables of the Chi-squared distribution [1,12] and Table 1, for ν =30, we 
conclude that the data is not consistent at all.  In this example, the consistence level is almost 
zero. 
 
Fig.11 and 12 show the performance of a tracking system that tracks two crossing targets in 
case of incorrect (when the postulated probability density function does not fit the 
experimental data) and correct (when the postulated probability density function fits the 
experimental data) modelings respectively. It is clear that the performance of the tracker is 
very poor in case of incorrect modeling. Fig.13 compares the performance of a PCM (pulse 
code modulation) communication system in case of correct and incorrect modelings for 
different signal to noise ratios (SNR). It is clear that the probability of error (Pe) in case of 
correct modeling is much smaller than the Pe in case of incorrect modeling for all values of 
the signal to noise ratios. Figures 11-13 show the importance of the proposed test.       
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Conclusion 
 
We are interested in determining how well a postulated probability model fits an experimental 
probability model .In this paper, a method to determine the goodness of fit of a distribution to 
a set of experimental data has been proposed.  The proposed method depends on the Chi-
square test to carry out the comparison between the postulated probability density function 
and the experimental probability density function. The chi-square statistic is defined as the 
weighted difference between the observed number of outcomes and the expected number. The 
weighted difference is compared with a threshold determined by the significance level of the 
test. If the fit is good, then the weighted difference will be small. Therefore the hypothesis is 
accepted if the weighted difference is too small and vice versa. The proposed method is 
applied to different examples of postulated and experimental probability models and is proved 
to be efficient and accurate. The importance of the proposed test is investigated by 
considering two practical examples. Comparison of the systems performances in case of 
correct and incorrect modelings has been done. The results show that the proposed  test is 
essential.   
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