
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 EP - 4 - 
 

* Assistant professor, Electrical Power and Energy Department, MTC, Cairo, Egypt 
 
 

1

 

 
Military Technical College 

Kobry El-kobbah, 
Cairo, Egypt 

 

 
5th International Conference 

on Electrical Engineering 
ICEENG 2006 

 

 
MULTIOBJECTIVE OPTIMISATION OF SWITCHED 

RELUCTANCE MOTOR USING FUZZY-GENETIC-SIMPLEX 
ALGORITHM 

 
Dr. Amged El-Wakeel* 

ABSTRACT  
 
This paper presents a new method for multiobjective optimisation of a switched reluctance 
motor. Four objective functions regarding motor efficiency, power factor, torque ripples and 
outer volume are considered. The proposed method combines fuzzy logic, genetic algorithm 
and simplex technique as a general global optimisation technique. The new technique is 
searching for the best compromise solution, which maximises the designer total degree of 
satisfaction. In order to predict the motor performance accurately , a hybrid  FEA-analytical 
simulation model has been adopted. The model combines some of the FEA accuracy with the 
simplicity of analytical model. A full time stepping FEA analysis for the optimised motor has 
been done to verify the final design of the motor. 
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1.INTRODUCTON 
 
Many real world electromagnetic problems involve simultaneous optimisation of multiple 
objectives that are usually in conflict such as volume and efficiency. Generally there are two 
ways to solve such optimisation problems. One way is to get the best compromise solution 
and the other way is to get all non-inferior (Pareto) solutions. In compromise solution 
methods, the original multiobjective problem (MOP) is converted to a single-objective 
problem (SOP) and then solved by any of the deterministic techniques. From this category 
weighted sum method in which the multiobjective optimisation problem is converted to a 
single-objective optimisation problem by weighing the objectives with a weighting vector. 
Weights are usually assigned according to the importance of objectives; more important 
objectives will get higher weights, and less important objectives will get lower weights. 
However, since not all objectives have the same range of values, they must also be 
normalised [1, 2]. The main disadvantages of this method are: the difficulty in choosing the 
best set of weights for the problem, and the difficulty of dealing with different quantities, 
which are measured in different scales [2]. In addition to the above drawbacks, the use of any 
well-known deterministic algorithm usually leads to a local optimum rather than a global 
optimum solution. 
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The other conventional way is to use constraint method. The constraint method involves 
optimising the main or primary objective function and expressing the other objectives in the 
form of constraints [1, 3]. This method has the advantage of converting problem to a simple 
single-objective problem. However, the method suffers from the difficulty of selecting 
suitable values of constraints to ensure a feasible solution[4].Too hard constraints may lead to 
no solution and at least one of the bounds must be released to solve the problem [1]. 
On the other hand, the concept of Pareto optimum was formulated by Pareto in 1896, it is 
considered as an essential searching part in this area [1]. In Pareto optimum, a solution can be 
superior, inferior, equal, and also indifferent to another solution with respect to another 
objective values. “Superior” means a solution that is not inferior in any objective and at least 
superior in one objective than another; the superior solution is also said to dominate the 
inferior one. Using this concept, one can define what an optimal solution is:” a solution 
which is not inferior to any other solution in the search space”. Such a solution is called 
Pareto Optimal and the entire set of optimal trade-offs is called Pareto front or Pareto optimal 
set [5]. 
The main advantages of Pareto Optimum are that it takes all objectives into account 
simultaneously, and every element of Pareto front can be considered as a good solution[2]. 
However, the method is computationally expensive since it needs to maintain the front, and 
hence needs to store and continually update a large set of solutions. Also, it is not very good 
and intuitive if the number of objectives is large. In some cases, when all objectives are 
equally important, there are an incredible number of Pareto optimal solutions, which 
complicate the optimisation process. 
 
2. OPTIMISATION ALGORITHMS OF ELECTRICAL MACHINES  
 
In the design optimisation of electrical machines, the following issues are worth considering: 

- There are usually many conflicting design objectives, which need to be optimised 
together. 

- Many of conflicting objectives are measured in different scales (e.g. volume and 
efficiency).  

- Most design procedures contain relaxable or soft constraints that can easily be 
represented by fuzzy sets, in addition to tight, or hard constraints. 

- Sufficient information is usually available for the designer to determine his/her goals 
and hence the computationally expensive Pareto methods are not needed. 

- Some expensive time methods such as sequential optimisation method are not justified 
for a real compromise solution. 

From these issues it is clear that the constrained multiobjective optimisation formulation is 
the natural choice in electrical machine design optimisation.  
Optimisation algorithms on the other hand, can be classified according to determinism into 
two categories: stochastic and Deterministic. Genetic algorithm is an example of stochastic 
techniques while simplex algorithm is an example of deterministic techniques. In this section, 
the two algorithms in addition to the new Fuzzy-genetic-simplex algorithm are explained.  
 
2.1 Genetic Algorithm 
Genetic algorithm has been applied to many electric machines [3, 6-8] but it still has not been 
tuned to get red of its inherent convergence slowness especially for large search space 
optimisation problems. The Genetic Algorithm can be summarised as follows [3]: 
i) Build a fitness function from the objective function and constraints. 
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ii) Create an initial population (usually randomly generated strings). The population consists  
of N strings or chromosomes, which in turn are composed of sub-strings or genes 
describing the design variables.  

iii) Evaluate all of the individuals according to the fitness function. 
iv) Select a new population from the old population based on the fitness of the individuals.  
v) Apply genetic operators (mutation & crossover) to members of the population to create 

new solutions. 
vi) Evaluate these newly created individuals. 
vii) Repeat steps from (iv) to (vii) until the termination criteria has been satisfied. 
 
2.2 Simplex Algorithm 
Simplex algorithm has also been applied to many electric machines [3, 9, 10]. Its main 
disadvantages are that the algorithm efficiency depends on starting point and the search step 
length. Also, the algorithm in general searches a point of local optimum unless the objective 
function is uni-modal.  However the algorithm is very fast compared to genetic algorithm and 
does not depend on the accuracy of descent direction evaluation required by other 
conventional deterministic algorithms. 
The Simplex algorithm is based on the idea of comparing the values of the objective functions 
at the N+1 vertices of a polytope (Simplex) in N-dimensional space and moving the polytope 
towards the minimum point as the optimisation progress. The movement of the polytope 
towards the minimum point is achieved through three operations: Reflection, Contraction, and 
Expansion [11]. 
The algorithm can be outlined as follows: 
i) Select a starting point. 
ii) Construct a starting polytope consisting of the starting point and the additional points (one 

point in each dimension).   
iii) Evaluate the objective function at each point.  
iv) Replace the worst point by a new point using simplex operators (Reflection, Contraction, 

and Expansion) 
vi) Repeat steps from (iii) to (vi) until the termination criteria has been satisfied. 
 
2.3 Genetic-Simplex Algorithm 
 
The genetic-simplex algorithm can be summarised as follows[12]: 
i) Apply genetic algorithm to locate the interval, which likely contains the global minimum. 
ii) Switch to the simplex method assuming the final solution of the genetic algorithm as a 
starting solution for simplex.    
This technique combines a Genetic algorithm with the Simplex method and is aimed at 
solving the following problems [9, 11]:  

- The genetic algorithm avoids local minima.  
-  The simplex algorithm avoids the problem of slowness and near-optimum 

convergence. 
 
2.4 Fuzzy-Genetic-Simplex (FGS) Algorithm 
 
This proposed algorithm has the following steps: 
i) Aggregate the different in-conflict objectives in one objective using Fuzzy combination 

algorithm. 
ii) Apply genetic algorithm to locate the interval, which likely contains the global minimum. 
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iii) Switch to the simplex method assuming the final solution of the genetic algorithm as a 
starting solution for simplex.  
This new algorithm is proposed to solve the following problems.   

- The problem of decision-making coincides with weighted sum method by employing 
the fuzzy combination algorithm. 

- The problem of too hard constraints coincides with constraint method by using fuzzy 
constraints. 

- The problem of local minimum sticking by using genetic algorithm. 
- The problem of slowness and near-optimum convergence by simplex algorithm[10, 

13]. 
The proposed technique will be applied to optimise a Switched reluctance Motor for vehicle 
applications. 

 
3. PROBLEM FORMULATION 
This section describes the use of genetic and hybrid algorithms using real rather than binary 
encoding to obtain new designs for multiobjective optimisation problem that translates into 
significant cost and performance benefits for the switched reluctance motor. The switched 
reluctance motor has been selected because it has many advantages such as simple and robust 
construction with high reliability and low cost. The problem formulation includes the 
formulation of objective function, motor modelling, optimisation constraints and fitness 
function 
 
3.1 Objective Function and Optimisation Vector 
The objective function is selected to minimise the outer volume ( outV ) and Torque ripples 
(TR ) and maximise the power factor ( PF ) and efficiency (η ) as: 

 ( ) { }outF x V PF TRη=  (1) 

- The outer \volume can be expressed as [3]: 

 
2

4out e
DV L
sr

π ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (2) 

where D is the rotor outer diameter, sr is the split ratio of rotor outer diameter to motor outer 
diameter and eL is the envelope length which is a function of stack length  l  and diameter 
D [3]. 

- The maximum power factor can be estimated as the ratio between output 
energy (W ) and the input energy (W R+ ) in each working stroke [14]: 

 WPF
W R

=
+

 (3) 

- The per unit efficiency of motor can be computed as: 

 r

r cu c m

P
P P P P

η =
+ ∆ + ∆ + ∆

 (4) 

where rP is the rated output power, cuP∆ is the full load copper loss, cP∆ is the core losses, and 

mP∆ is the mechanical losses.  
- Torque ripples can be expressed as: 
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 max min

max

[ ]T TTR pu
T
−

=  (5) 

where maxT and minT are the maximum and minimum values of the instantaneous torque. 
Since copper losses depend on current density (δ ) [15], iron losses and power factor depend 
on stator flux density ( sB ) [16], and torque ripples depend on the stator and rotor pole arcs 
( ,α β )[17], the design vector has been selected to contain the following effective parameters: 

 { }sX D l sr Bα β δ=  (6) 

3.2 Fuzzy Aggregation Of Objectives 
The main steps of fuzzy aggregation process are: 
 
3.2.1 Objective identification 
The first step consists of defining all objectives of the problem in terms of fuzzy sets. The 
shape of the membership function most suitable for the problem should be selected [18]. 
 
3.2.2 Fuzzification 
Fuzzification means that the calculated objectives are transformed into fuzzy quantities, 
which are also referred to as linguistic values. This means that for each objective function f , 
there is value of µ gives the degree of fulfilment or satisfaction of this objective. 
In our application, the following simple two memberships can be used: 
- Efficiency and power factor membership function (S-shaped): 
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                                           (7) 

- Volume and torque ripple membership function (Z-shaped): 
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                                           (8) 

where Mi is the function value corresponding to the highest degree of acceptance and mi is the 
function value corresponding to minimum or zero degree of satisfaction. For the efficiency 
and power factor, the maximum values Mi can be selected from the graph shown in Figure 1. 
The graph is just an example obtained from many previously published designs [15].  
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Figure 1 Example of maximum values for efficiency and power factor. 

 
3.2.3 Fuzzy Combination 
This allows comparing and combining different degrees of satisfaction in a global one. The 
degree of acceptance of each configuration or design is defined as the intersection of all the 
single objective membership functions. The optimisation procedure therefore must look for a 
configuration, which maximises the global degree of satisfaction as: 

 { }max tX
imize µ  (9) 

where tµ  is the global degree of satisfaction and can be defined as: 
     1 2 3..............t k for k objective functionsµ µ µ µ µ= I I I  (10) 

or { }max 1, 2,.............,jX
j kµ =∏                  (11) 

A flow chart of the fuzzy aggregation method is clear in Figure 2 
 

 
Figure 2 Flow chart of Fuzzy Optimisation 
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3.3 MOTOR MODEELING 
3.3.1 Static Model 
i- Magnetisation curves 
The model adopted in this paper is a modified version of the analytical model that published 
in reference [19]. This model connects the fundamental design of an SRM to a simple 
analytical expression, which summarises the terminal magnetisation characteristics. The 
modelling procedure takes simple piecewise linear models which are based on the geometry 
and turns per phase of the SRM and maps them through simple and fast algorithms into the 
following analytical expression: 

 2( ( ). )
1 3 ( , )  ( )[1 -  ] ( ).                                         a ii a e a iϑλ ϑ ϑ ϑ= +  (12) 

where 1a , 2a , and 3a are the magnetisation coefficients, which are functions of rotor position. 
These coefficients are approximated at aligned and unaligned positions in reference [19] but it 
was found that these initial values are most suitable for heavily saturated motors and not very 
good for optimisation purposes. So a simple direct optimisation algorithm based on Simplex 
optimisation is adopted to find the most suitable coefficients for the model to best fit the FEA 
solutions at the aligned and unaligned positions. This hybrid FEA-Analytical technique 
comprises some of the FEA accuracy with the simplicity of the analytical model and still less 
time consuming compared to full FEA simulation[15]. 
ii- Static Co-energy and Torque curves 
To compute the static torque curves ),( iT θ , the function or table of co-energy values 

),( iW θ is required.  From equation (12), the co-energy can be computed as: 

       W(θ,i) = 
0

( , )
i

i diλ θ∫                                                                                         (13)                         

       W(θ,i) = ( )2( ( ) ) 231
1

2

( )( )( ) 1
( ) 2

a i aaa i e i
a

θ θθθ
θ

+ − +                          (14) 

The static torque can therefore be computed numerically as: 

       T(θ,i) = ( , )W i∂ θ
∂θ

  for constant i.                                                                  (15) 

3.3.2 Steady state dynamic model 
For accurate simulation of the steady state performance, the actual current waveform for 
normal conditions must be represented as accurate as possible. Current prediction requires the 
definition of the magnetic behaviour of the motor in the form of ( , )i ϑ λ and the solution of 
the differential circuit equations. 
 The phase equation of the motor has the following formula: 

 ( , )d i V Ri
dt
λ θ

= −             (16) 

where R is the per-phase resistance and V is the applied voltage. 
The applied voltage can be expressed as: 

0.0

s O C

S C q

q

V
V V

θ θ θ
θ θ θ

θ θ

⎧ < <
⎪= − ≤ <⎨
⎪ ≥⎩                                                                              (17) 

where sV is the dc supply voltage, Oθ  is the turn-on angle, Cθ  is the turn-off or commutation 
angle, and  qθ is the quenching angle.  
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Under normal operating conditions, the speed is constant and hence the equation (16) can be 
expressed as: 

                                              
( , ) 1 ( )d i V Ri
d
λ θ
θ ω

= −                                                               (18) 

To obtain the current waveforms, the following steps have to be undertaken: 
(i) Equation (18) is integrated numerically for one phase; the other phases are the same but 
phase-shifted by a step angle sα . 
(ii) After each step in the integration, the current is updated according to the new value of the 
flux linkage.   
(iii) The new value of current is used in the next integration step and so on.  
These steps can be summarised as: 

 1k kθ θ θ−= + ∆  (19) 

And 1 1
1 ( )k k kV Riλ θ λ
ω − −= − ∆ +  (20) 

where k is the number of the integration step and θ∆  is the integration step angle. 
The steady state dynamic torque, co-energy, and magnetisation curves can be obtained from 
the static characteristics by interpolation following the estimated current / angle waveform. 
From theses torque curves the resultant torque can be estimated. 
3.3.3 Losses Calculation 
-The mechanical losses due to friction in the bearings and windage between stator and rotor 
can be approximated by[20]: 

 217. .m rP n D L∆ =  (21) 

where rn is the motor speed [rpm]. 
-Electrical copper loss can be computed as: 

 2. .cu rmsP q I R∆ =  (22) 

where R is the phase resistance and rmsI is the effective phase current. 
- For iron losses estimation there are many models however for fast and still accurate 
estimation the model of reference [21] has been adopted. The model is based on experimental 
work and background knowledge of how core losses vary in conventional machines: 
   

 
c

b
c s

s

Va f
f

⎛ ⎞
∆ = ⎜ ⎟

⎝ ⎠
 (23) 

And c S ST CP Vσ∆ = ∆  (24) 

where V is the effective phase voltage [22] or the peak supply voltage [21], sf is the supply 
frequency, sσ  is the steel mass density,  a,b, and c are constants, and STV is the total motor 
steel volume.   
3.4 Constraint Functions 
i- Constraints On Motor Proportion And Physical Dimensions:  
- Stator Pole Width to Pitch Ratio 1r :  
For self-starting motor, the stator pole width must not be less than the step angle i.e. 

 1
2r
n

≥  (25) 
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where 1r  is the stator pole width to pitch ratio or normalised stator pole width and n is the 
number of rotor poles. 
-Rotor Pole Width to Pitch Ratio 2r :  

 2 1.
nr r
m

≥  (26) 

where m is the number of stator poles. This constraint is placed to ensure that the rotor pole 
width is greater than or equal to the stator pole width and hence assures self-starting of the 
motor with adequate time for the current to decrease in each stroke. 
-Motor Aspect Ratio ( AR L D= ): 

 0.3 3.0AR≤ ≤  (27) 

 This constraint ensures a sensible aspect ratio for the motor. 
-Angular Clearance Constraint: 
The stator pole arc α  must be less than the rotor interpolar arc β\ to ensure angular clearance 
between the stator and rotor pole corners and hence ensure sufficiently low unaligned 
inductance Lu 

 'βα <  (28) 

-Slot Filling Factor Ff: 
 mff ff≤  (29) 

where mff is the maximum slots filling factor which depends on the type of coil and amount 
of insulation. The value equals 0.4 for dropped in coils and 0.7 for pushed through coils.  
-Airgap Length lg: 

 0.2gl mm≥  (30) 

This constraint ensures that the airgap is mechanically acceptable. 
-Positive Value Constraints: 

 0iX >  (31) 

where Xi is any of the optimisation variables 
ii- Constraints on Magnetic and Electric Loading: 
-Stator Current Densityδ: 

 maxδ δ≤  (32) 

where maxδ is the maximum allowable current density. The effective current density ranges 
from 3 to 6 for totally enclosed natural cooling motors and from 7 to 10 for external self-
ventilation motor [3]. 
-Stator Tooth Flux Density sB : 

 s stB B≤  (33) 

where stB is the saturating flux density, which ranges from 1.7 to 2.2 Tesla, depending on the 
steel material. 
iii- Performance Constraints: 
-Steady State Average Torque aT : 

 .a oT k T≥  (34) 

Where oT is the full load output torque and k is the overload factor (usually 1.15).  
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-Efficiency η:  
 min maxη η η≤ ≤  (35) 

where ηmin and ηmax are the minimum and maximum allowed efficiencies. This constraint 
ensures practical efficiency of the motor and hence suitable temperature rise.  
- Generalised Power Factor PF : 

 min maxPF PF PF≤ ≤  (36) 

where minPF  and maxPF are the minimum and maximum allowed power factors. This 
constraint ensures suitable KVA/KW requirements of SRM drive where increasing the PFm 
tends to lower the volt-ampere requirements of the drive.  
iv- Search space constraints: 

 0.05 0.5D≤ ≤  (37) 

 0.05 0.5L≤ ≤  (38) 

 0.55 0.63sr≤ ≤  (39) 

These constraints are necessary to limit the search space into a practical domain. 
It is clear that there are a number of variables and constraints, which are, involved directly in 
the optimisation process such as number of stator and rotor poles, Stator Back depth to stator 
pole width ratio, winding areas, and shaft diameter. For this reason the design and analysis 
program is executed at each optimisation step to complete the design data and compute the 
objective and constraint functions. 
 
3.5 Fitness Function 

The design optimisation procedure can be implemented by converting the constrained 
problem into an unconstrained one using exterior penalty functions. This ensures that the 
constraints are satisfied during the optimisation process [3, 7, 9, 23].  

Using a static penalty factor, the fitness or augmented function can be written as: 

 
2

1
( ) ( ) {max(0, ( )}

im

j j
j

f X F X r W g X
=

= + ∑              (40)     

And the standard form of ( )ig X is: 
 ( ) 0jg X ≤                (41)                             
where  r is the static penalty factor, Wj is weighting factor and gj(X) is the inequality 
constraint functions. The best value for the static penalty factor r is problem dependent and 
can be found only through trial and error [3, 7, 9]. 
 
4. RESULTS AND CONCLUSION 
The proposed optimisation algorithm as well as the simplex optimisation method has been 
applied to a 40 kW/200 Nm, 240V, 6/4, 3phase, 2000 rpm, air-cooled SRM. The main 
dimensions of the starting design have been taken from reference [24]. The motor is then re-
simulated using steel M22 at 2sB T= and taken as a good initial point. The problem is solved 
with seven variables and fifteen active constraints [equations (25): (39)]. The airgap is 
assumed constant at 0.947 mm during optimisation process to achieve fair comparison with 
the initial design. The proposed values of Mi and mi for the outer volume, power factor, 
efficiency and torque ripples are selected respectively as: 
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[ ]
[ ]

0.0017 0.850 0.98 0.1996

0.00853 0.550 0.88 1.1974
i

i

M

m

=

=
                                                           (42) 

 The main results of the optimised design and simulation are explained in Table1 and in 
figures 3:8.  

Table 1 Main Parameters of the SRM design 

Fuzzy Main parameters Initial 
design 

Fuzzy-
Simplex Genetic Genetic-

Simplex 
Population Size - - 3000 3000 
Number of crossovers - - 750 750 
Number of mutations - - 60 60 
Number of generations - - 50 50 
Rotor outer diameter 0.18972 0.1700 0.1852 0.1644 
Axial stack length 0.18972 0.1819 0.1611 0.1809 
Split ratio 0.55 0.53796 0.5480 0.5288 
Stator pole arc [degrees] and [pu] 30/0.5 30.29/0.505 31.15/0.519 30.74/0.5123
Rotor pole arc [degrees] and [pu] 36/0.4 39.07/0.434 48.04/0.533 46.28/0.5143
Current density [A/mm2] 4.4616 4.855 4.3737 4.6671 
Maximum stator flux density [T] 2 2.0552 2.0457 2.053 
Average torque [Nm] 178.17 208.1185 205.779 203.6907 
Outer Volume (estimated) [m3] 0.0271 0.021326 0.02324 0.020339 
Power factor (estimated)  0.745 0.7983 0.7997 0.7924 
Efficiency (estimated) % 94.3194 95.1427 94.9386 94.7644 
Torque ripples % (estimated) 79.83 64.873 33.095 36.331 
Total degree of acceptance [pu] 0.088 0.3927 0.55419 0.6060 
The results show the following 
- Improvement in all objective functions with respect to the initial design especially for 

torque ripples, however it is fair to say that the initial design was intended for wide speed 
applications rather than low torque ripple applications. 

- Fuzzy-simplex optimisation algorithm achieved slightly better efficiency and power 
factor and inferior outer volume and torque ripples with respect to the final solution, 
which assures the existence of conflict among objective functions.  

- The proposed optimisation technique (FGS) achieved the highest degree of acceptance 
and improved than that of fuzzy-simplex and fuzzy-genetic algorithm by approximately 
21% and 5% respectively. 

- Coupling of both simplex and genetic algorithms improves the slow finishing of genetic 
algorithm and eliminates the local minimum sticking of simplex algorithm. 

- The existence of fuzzy aggregation eliminates the continual existence of decision maker. 
- The time stepping finite element analysis (FEA) of the motor has been done as shown in 

figures 4:7.  These figures showed good accuracy of the adopted model and improvement 
in the torque ripple from 36.33% to 32.7% and a slight decrease in average torque ~ 4%. 

- The genetic algorithm is faster in determining the interval of optimum design than 
determining the optimum design itself and this is clear in Figure 3. 
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Figure 6 Dynamic torque curves 
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Figure 7 Co-energy Curves 
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