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ABSTRACT 

Uncertainty is a major issue facing electric utilities in planning and decision making. 
Modeling uncertainty can be based on two general approaches. The first is a probabilistic 
approach where probability distributions for all of the uncertainties are assumed. The second 
approach is called “Unknown but Bounded” in which upper and lower limits on the 
uncertainties are assumed without probability distributions. Interval mathematics provides a 
tool for the practical implementation and extension of the unknown but bounded concept. The 
calculation of HVDC transmission lines fields is used as an example to illustrate the use of 
interval mathematics. Ground- level electric field values are calculated using the traditional 
single point numbers as well as interval numbers. Various geometries for monopolar and 
bipolar dc lines are considered. The values from the two methods are compared to prove the 
validity of interval analysis to, practically, model uncertainties associated with HVDC 
transmission lines field analysis. Procedures devised to reduce the width of the resulting 
interval bounds either through rearranging the governing expressions or through derivation of 
interval probability are discussed. 
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1. INTRODUCTION 
 
Clearances used in the design and/or analysis of overhead transmission lines are employed to 
ensure all activities in the vicinity of energized lines are adequately insulated to allow that 
activity and the overhead lines to coexist. Typically, utilities assign a deterministic value for 
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the mechanical clearance buffer based on historical practices, field study, and engineering 
judgment [1]. As a result, there are many uncertainties associated with utility decisions in this 
regard.  HVDC electric fields are currently a source of environmental and public health 
concerns [2-4]. These fields depend mainly on the line clearances and their values and 
distributions; thus, should be treated as uncertain as it is no longer valid to assume that the 
input parameters are known with certainty. Utilities need to understand the potential effects of 
variations in these parameters on the final outcome of their studies. 
 
Modeling uncertainty can be based on two general approaches. The first is a probabilistic 
approach where probability distributions for all of the uncertainties are assumed. The second  
approach is called “Unknown but Bounded” in which upper and lower limits on the 
uncertainties are assumed without probability distributions[5,6]. Interval mathematics 
provides a tool for the practical implementation and extension of the unknown but bounded 
concept. By using interval analysis, there is no need for many simulation runs because the 
total variation in the output is known given the total variation in input parameters[6]. Interval 
mathematics have been recently used in load flow studies to account for load uncertainty[7,8] 
In this paper, the calculation of HVDC transmission line electric field values and distributions 
is used as an example to illustrate the use of interval mathematics. These calculations are 
performed on different HVDC transmission line arrangements. Lateral electric field values are 
calculated using the traditional single point numbers as well as interval numbers. The values 
from these two methods are compared to prove the validity of interval analysis. A procedure 
is devised in order to reduce the width of the resulting interval bounds. In addition, different 
interval bounds are produced with different probabilities.  
 
II. MODELING UNCERTAINTY 
 
Uncertainty is a major issue facing electric utilities in planning and decision making. 
Substantial uncertainties exist concerning HVDC transmission line clearances and associated 
environmental effects such as the electric field in the vicinity of the lines. 
Modeling uncertainty in utility calculations can be based on two general approaches [5-9]. 
The first is a probabilistic approach where probability distributions for all of the uncertainties 
are assumed. The second approach is called “Unknown but Bounded” in which upper and 
lower limits on the uncertainties are assumed without a probability structure. 
A probability distribution may be assumed in some cases since no particular distribution is 
known, all values are assumed to be equally likely between given limits. In this type of 
situation a uniform distribution is the most appropriate. Another approach to modeling 
uncertainty is referred to as unknown but bounded. In this case upper and lower bounds on the 
uncertainties are assumed without probability distributions. The concept was defined in 
general in earlier references [5,9]. 
Interval mathematics provides a tool for the practical implementation and extension of the 
unknown but bounded concept. Confidence intervals cannot be calculated in this case because 
there are no probability distributions. However, probability intervals can still be developed as 
will be shown later.  
The uncertainties associated with transmission lines electric fields analysis could be more 
effectively understood if the input parameters were treated as interval numbers whose ranges 
contain the uncertainties in those parameters. The resulting computations, carried out entirely 
in interval form, would then literally carry the uncertainties associated with the data through 
the analysis. Likewise, the final outcome in interval form would contain all possible solutions 
due to the variations in input parameters. Thus, it is possible to perform sensitivity analysis by 
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assigning interval bounds to any or all of the input parameters and observing the effects on the 
final interval outcome. 
 
III. INTERVAL MATHEMATICS 
 
Interval mathematics provides a useful tool in determining the effects of uncertainty in 
parameters used in a computation. In this form of mathematics, interval numbers are used 
instead of ordinary single point numbers. An interval number is defined as an ordered pair of 
real numbers representing the lower and upper bounds of the parameter range [6]. An interval 
number can then be formally defined as follows: [a. b], where a ≤ b. In the special case where 
the upper and lower bounds of an interval number are equal, the interval is referred to as a 
point or degenerate interval. In this case, interval mathematics is reduced to ordinary single 
point arithmetic. 
Given two interval numbers, [a, b] and (c, d], the rules for interval addition, subtraction, 
multiplication, and division are as follows: 
 

[ a, b] + [ c, d ] = [ a + c, b + d ]                                                                (1) 
[a, b] – [c, d] = [a-d, b-c]                                                                        (2) 

[a,b]*[c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]                             (3) 
(a,b] / [c,d] = [a,b] * [l/d, l/c],           where 0 ∉ [c, d]                         (4) 

 
Implementing interval analysis techniques confronts some obstacles because its algebraic 
structure is unlike that of common single point arithmetic. Accordingly, interval computations 
may produce wide bounds [5,9]. 
Figure 1. Monopolar HVDC arrangement                                  Figure 2: Bipolar HVDC arrangement 
 
Given a set of interval input parameters, the bounds of the resulting interval computations 
may depend on the calculation procedure as well as the input parameters. Therefore, an effort 
has to be made to reduce the width of the resulting interval bounds. Normally, the approach to 
produce better bounds has been to rearrange the expression so that each interval parameter 
appears only once in the equation [5]. The approach is illustrated in reference [6]. 
 
IV.  HVDC TRANSMISSION LINE FIELDS 
HVDC transmission lines ionized fields have been a source for environmental and biological 
public concerns [2-4,10,11]. Calculation of HVDC fields, even without space charges, is 
important to determine the ionized field quantities. The calculation of HVDC fields is used 
here as an example to illustrate the use of interval mathematics. Electric field values are 
calculated using the traditional single point numbers as well as interval numbers. The values 
from these two methods are compared to prove the validity of interval analysis. 
Means of analyzing dc electrostatic fields are well known. Electric fields in the vicinity of 
corona- free (i.e. without space charge) dc conductors can be readily determined by several  
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techniques including conformal transformation, method of images, and simplified equations 
such as those formulated by N. Knudson, Anneberg HVDC testing stations [10]. Knudson’s 
method for computing the space charge- free field above flat ground plane covers the 
following two cases : monopolar and bipolar which are shown in figures 1 and 2. The 
resulting formulas are given below for the two arrangements where: 
  
X is the lateral distance from conductor   
H is the height above ground of conductor  
U is the voltage of conductor 
R is the radius ( or equivalent radius) of conductor 
S is the separation of conductors 
K is the coupling factor between the two conductors 
 

Case 1 ( Monopolar Line) 
 
The first arrangement is a monopolar HVDC configuration with distances as shown in Figure 
1. The electric field at ground is[10], 
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Case 2 (Bipolar Line): 
 
The second arrangement is a bipolar HVDC configuration with distances as shown in Figure 
2. The electric field at ground is[10], 
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5. RESULTS 
 
This section presents the results of HVDC transmission line field calculations for the two 
cases described above. Two methods will be used as follows. Method A represents traditional 
single-point mathematics. This method will determine the minimum and maximum values for 
a range of distances that fall within certain lower and upper limits. Method B will use interval 
mathematics to determine the interval outcome resulting from interval numbers representing 
the ranges of distances. The bounds of intervals that represent distance ranges will be the 
same as the minimum and maximum limits used in Method A. The computations are carried 
out in the MATLAB environment and the toolbox Intlab is used for interval computation[12]. 
In addition, in order to reduce the interval bounds the calculations are carried out using 
modified formulas expressed as follows for the monopolar case; 
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and the modified form for the bipolar case is; 
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5.1 Interval Bounds 
 
Monopolar case 
 
The following values will be used in the calculations: U=600 kV, H = 12.2m, 4x30.5mm 
subconductors, 45.7cm bundle diameter, and S= 13.2m. A tolerance of 5% is assumed in the 
input parameters. In case 1, H is considered to be the only interval parameter. H will have a 
minimum of 10.98 m and a maximum of 13.42 m, then using method A the value of E (at 
X=0), e.g., will have a minimum of 18.55 kV/m and a maximum of 20.92 kV/m. For method 
B, H is represented as the interval number [10.98, 13.42] m. When this interval number is 
used to compute E using equation 8 the interval result for E is [ 18.55, 20.92] kV/m. This 
demonstrates the accuracy of interval techniques in producing accurate bounds for the output 
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result. When eqn. 5 is used, the interval result for E is [15.19, 25.55] kV/m which reflects the 
fact that some interval computations may result in overly wide bounds. The result will have a 
width of 10.36 using eqn. 5 compared with 2.37 using eqn. 8. Normally, the approach to 
producing better bounds has been to rearrange the expression to reduce the appearance of  
each interval parameter. It is clear that the resulting interval bounds are drastically improved 
by using the modified equations. This concept can be used to carry out any field calculation to 
get exact bounds on the resulting interval. As an example of other values between the limits, 
let H=12 meters, the result will be E = 20.06 kV/m, which falls within the range of minimum 
and maximum values of E obtained earlier using either eqn 5 or eqn 8. 
 
The reasons for the variations in H are numerous including environmental conditions, loading 
conditions, deviations during the design and erection stages, or simply errors in measurements 
[3,10,11]. Similarly, the lateral location X may be inaccurately determined; though with a 
lesser error than H. The results for E when H alone or X alone or both are treated as interval 
numbers are shown in Figure 3 a,b,c. It is clear that the value of E is much more influenced by 
uncertainty in H than in X.   

0 5 10 15 20 25 30 35 40
0

10

20

30

0 5 10 15 20 25 30 35 40
0

5

10

15

20

0 5 10 15 20 25 30 35 40
0

10

20

30

x (m)

E
 (k

V
/m

)
E

 (k
V

/m
)

E
 (k

V
/m

)

(a) 

(b) 

(c) 

__ single point computation
---- interval computation 

 
Fig. 3 Lateral electric field profiles with uncertainties-monopolar case 

(a) H only     (b) X only    (c) both H and X 
Bipolar case 
In case 2, there are three parameters which are H, X, S . First, it is considered that S is the only 
interval parameter. S will be represented by [12.5399,13.8601] m. The electric field lateral 
profiles are shown in Fig. 4, where X is replaced by X+S/2. The peak value of E using method 
A is 13.4722 kV/m ;while using method B the interval value is [12.8169,14.1265] kV/m 
which shows the validity of the interval approach. The slight asymmetry of the field profiles, 
commonly observed in many outdoor studies [1,3,10,11], may be partly explained by the 
uncertainty in the value of S as observed here at the zero crossing. The E profiles with 
uncertainty in H only are shown in Fig.5. It cab be seen that using Eqn. 6 results in incorrect 
distributions of E while the modified Eqn. 10 provides the correct result:  
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Fig.6 shows the E profiles when all uncertainties in H, X, S are included in the analysis using 
both eqns 6 and 9. For the single point computation, both the negative and positive peaks 
equals 13.4722 kV/m and located at ± 9m from the mid distance of the towers (X=0). The 
interval computation, using Eqn. 9, results in the –ve peak values of -10.3068 kV/m and -
16.9331kV/m at -10m and -8m respectively. The +ve peak values are between 11.1345 kV/m 
and 16.0257 kV/m at 7m and 9m respectively. It is clear that the interval results bounds both 
peaks in value and location while accounting for all possible uncertainties in the input 
parameters. When assuming a 5% tolerance in the parameters H, X, S , the –ve peak may vary 
by +25% to -23% and the +ve peak may vary by +25% to -17% of their corresponding single 
point estimates.  
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Fig. 4 Bipolar lateral electric field profiles with uncertainties in S 
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Fig. 5 Bipolar lateral electric field profiles with uncertainties in H 
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Fig. 6 Bipolar lateral electric field profiles with uncertainties in H,S,X 

This may partly explain the discrepancies which usually observed in outdoor field 
measurements when compared with calculations [1,3,10,11]. The above analysis demonstrates 
the accuracy of interval techniques in producing accurate bounds for the output result. By 
using interval analysis, there is no need for many simulation runs because the total variation 
in the output E is known given the total variation in the input parameters H, X, S.  
Another technique for reducing the width of the resulting interval is to develop what is called 
‘interval probability’ [5,9]. This can be accomplished by assuming the resulting interval to be 
represented by a uniform probability distribution with the lower and upper bounds of the 
distribution being those of the corresponding interval. In this case, as the exact value lies 
between these two limits, then the probability is 1. However, a narrower interval within which 
the exact value lies can be developed with a probability less than 1 ( e.g. 0.95 as commonly 
used). Further development of these procedures will be the subject of another research paper.  
 
6. CONCLUSIONS 
 
Interval mathematics can be used to, rigorously, determine uncertainty in parameters used in a 
computation of HVDC transmission lines electric fields. By using interval analysis, there is no 
need for many simulation runs because the total variation in the output is known given the 
total variation in input parameters. The calculation of the HVDC transmission line electric 
fields values and distributions of both monopolar and bipolar configurations were used as 
examples. Field values were calculated using the traditional single point numbers as well as 
interval numbers. The results from these two methods proved the validity of interval analysis 
for uncertainty assessment of electric field calculations. Extension of the interval methods to 
be applied to the uncertainty analysis of HVDC ionized fields, grounding systems and 
reactive power compensation of distribution systems is underway. 
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