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ABSTRACT  
Electro-optical pointing and tracking systems (EOPTS) have a wide range of military and 
civilian applications. The passive  line of sight (LOS) stabilization systems are multi-input 
multi-output (MIMO) systems that are highly nonlinear and possess a strong coupling effect 
between their states. it presents a challenging systems to control. In this paper the analysis of 
the passive (EOPTS) stabilization system with the development of its nonlinear models is 
derived. Two different types of control algorithms are presented. The first controller is a 
classical fuzzy control. The controller presents a good technique that proves to be stable with 
high transient and tracking performances. The controller is applied to the LOS stabilization 
system and the simulation results are introduced. Next, A Model Reference Learning fuzzy 
Controller less dependant on the designer knowledge of the LOS stabilization system is 
proposed. Such controller possesses a learning mechanism that is able to form its rule-base by 
watching the system behavior. The learning mechanism utilizes a reference model that 
describes the desired performance. The designed process of the controller and simulation 
results of implementing the controller to the system is introduced. Finally, comparative 
analysis between the two developed controllers is conducted. It discusses the advantages and 
disadvantages of each controller algorithm. 

 
Keywords: Multi input multi output (MIMO), fuzzy control, Fuzzy Model reference learning 
control (FMRLC), LOS stabilized system. 

 
1. FORMULATION OF SYSTEM EQUATIONS 
Figure (1) shows a gyro stabilized platform system [1, 2]. There are generally three main 
components, a flywheel, motors and mirror system.  Two gimbals that provide two-degree of 
freedom to the flywheel, Inner gimbal provides movement along the yaw axis and outer 
gimbal provides movement along the pitch axis, two torque motors are used to control the 
pitch axis and the yaw axis. A mirror that is geared to the inner gimbals through a 2:1 
reduction drive mechanism. Figure (2) shows schematic diagram of the gyro-mirror LOS 
system. The LOS stabilization system consists of four main modules, namely the rotor (R), 
the inner gimbal (IG), the outer gimbal (OG) and the mirror (Mr). The coordinate frames and 
the moment of inertia (MI) of each element along the principle axes are defined as follows: 
 i   index of three dimensional axis (1,2,3).   vi    vehicle frame/system frame, assumed fixed   
A  MI of outer gimbal (OG) about g1,     B, C, D   MI of inner gimbal (IG) about r1, r2 and r3 
E, F, G   MI of mirror about m1, m2 and m3    gi   outer gimbal frame 
ri         inner gimbal and rotor frame,  mi       mirror frame 
H     MI of rotor (R) about r1 or r2 J    MI of rotor (R) about r3 
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Fig.1 A passive Gyro-stabilized platform 
 

Fig. 2 Schematic of passive LOS 
stabilization system 

As shown in Figure 2, the gyro mirror LOS platform has   two coordinate axis (yaw axis and 
pitch axis), one tracking pointer (mirror) and a flywheel. By defining the coordinate frame. 
The transformation matrices between the coordinate frames are given by: 
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Where 1θ  and 2θ  are angle of rotation about axis 1 and 2 respectively as shown in Figure (1-
2). The angular velocities of the mechanical elements are as follows: 
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where RΩ , IGΩ , OGΩ  and MrΩ  are the angular velocities of the rotor, inner gimbal, outer 
gimbal and the mirror respectively. Using the transformation matrices shown above,  and its 
corrseponding own coordinate frame and define  the rotational kinetic energy for the system 
as a rigid body . The kinetic energy simplifies to a sum of three terms that is given by [3]: 
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Where i=1,2, 3 are the principle axes of each frame. Therefore, the kinetic energy of the 
elements are 
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Assuming that the system is rigid enough such that the strain energies are negligible, the 
Lagrange’s equations thus become[4]: 
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Where 
eK  denotes the kinetic energy,  iq  denotes a generalized coordinate ( 21,θθ  and 3θ ),and 

 iQ  denotes a generalized force 1τ  and 2τ .  
Applying Lagrange’s equation (10) to equation (9) we obtain: 
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where 2sin13 θθθω
•

+
•

=s  is the rotor spin velocity. It is a constant angular velocity of the 
flywheel.Equations (11) and (12) represent the nonlinear model of the LOS stabilization 
system., the following properties of the LOS system may be inferred as follow [4]: 

Property I: The terms coefficient of 1
⋅⋅
θ  and 2

⋅⋅
θ  are positive definite. This is an essential 

property of the system. This property will be used later in the development of controllers. 
Property II: The cross-couplings between the axes due to θ2 terms appearing in equation (11) 
and θ1 terms appearing in (12). The magnitudes of these values are small, and thus the cross-
coupling effects are week. However, the inclusion of the flywheel introduces strong cross-
coupling between the axes of the system as can be seen from the presence of θ3  in the last 
terms of equations (11) and (12). θ3 is usually in the order of thousand rpm. This strong cross-
coupling increases the difficulty of the control problem. For the passive LOS stabilization 
system, the control requirement can be stated as: achieve a sufficient high bandwidth with no 
steady state error for step inputs and decouple the system such that there is minimal cross-
coupling effect in the system. The ability of the proposed control to meet the above 
requirement will be considered in the following sections. Define the state variable, X, control 
signal, U, and the output vector ,Y, as follows: 

[ ] ,, 212121
T

T

UX ττθθθθ =⎥⎦
⎤

⎢⎣
⎡=

••  and [ ]TY 21 θθ=  

 
2. DESIGNING REQUIREMENT 
The ultimate requirement to the compensator is, that it works "well" for real system. This 
requirement can be subdivided into the following four categories: 
- Nominal stability: The compensator must ensure internal stability in the controlled system,    
  provided the model is correct 
- Nominal Performance: The compensator must minimize the error 
- Robust Stability: for all models the compensator must ensure internal stability 
- Robust performance: for all models the compensator must ensure that the error is within a 
  specified bound 
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3. FUZZY CONTROL 
Fuzzy system theory was first introduced to the research community in 1965 by Zadah [5]. 
Fuzzy set theory can be considered as a development of the classical set theory. In his fuzzy 
theory, Zadah assumes a gradual transition from one set to another. Accordingly, better 
presentation of different variable can be obtained with minimal number of sets. Hence 
classical sets are a simplified case of fuzzy sets where sets the membership level takes only 
two values, zero or one. 

 
3.1 Limitation of Conventional Controllers  
Conventional controllers can not used in all applications because it has a lot of restrictions: 
(1) Plant nonlinearity: Nonlinear models are computational intensive and have complex 
stability problem.(2) Plant uncertainty: A plant does not have accurate models due to 
uncertainty and lack of prefect knowledge. (3) Uncertainty in measurements and difficult to 
model.  However Fuzzy Control is used in different research and industrial due to its 
advantages:(1)Ability to translate imprecise /vague knowledge of human experts. (2) Smooth 
and robust controller behavior. 

 
3.2 Fuzzy Control Structure  
Fuzzy control theory can be found in many text books a and papers [6-8]. However the 
controller is composed of four elements as follow: 
(1) Fuzzyfication interface: it converts the crisp inputs to linguistic values that are easy to 
manipulate through controller's components. 
(2)Rule-base: It is a set of If-then rules that describes the knowledge of the experts of how to 
control the process. 
(3)Inference mechanism: It is mechanism that uses the fuzzified inputs together with the rule-
base to form the fuzzy control action. 
(4)Defuzzification interface: it converts the fuzzy conclusion into a crisp value suitable to be 
used as an input to the process. 

 
3.3 Classical LOS Fuzzy Control 
A full matrix fuzzy controller is designed 
to control the two state variables ( 1θ , 2θ ) 
of the LOS system considering the strong 
coupling effect the system possesses. 
Two fuzzy controllers are used as direct 
controllers (forward path between 1θ -

1τ and 2θ - 2τ  while the other two 
controllers are used to decouple the cross 
relationship between 1θ - 1τ and 2θ - 2τ . 
Figure (3) shows the controller structure Fig.3 Full matrix fuzzy controller block 

diagram 
The four controllers are MISO fuzzy controllers with two inputs representing the error and the 
change rate of the error. The inputs are given by the following equations. 

( ) ( ) ( )KTKTKTe 11
1
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∗ ,   ( ) ( ) ( )( )

T
TKeKTe

KTc
122

2
1

−−
= θθ

θ
                         (14) 

Where e , c represent the error and the change rate of error respectively and 
∗

θ  ,θ  represent 
the desired and measured angles respectively. Five membership functions are used for each 
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input and output of the four fuzzy controllers. Larger number of membership functions would 
not enhance the controller performance dramatically; however it will increase the 
complication of the design process. On the other hand, fewer number of the membership 
functions will significantly affect the controller performance negatively. Skewed triangular 
membership functions are used for inputs of the four fuzzy controllers.  
For the outputs, singletone membership functions are used. The singletone membership 
function simplifies the defuzzification when used for crisp outputs.  Finally, the rules at rule-
base of the fuzzy controller were formed by examining the linearized model of the LOS 
system in addition to the open loop analysis; the rule base was formed according to the 
following facts:  
The coupling effect dominates the characteristics of the system; hence, to move one gimbal, 
the controller is required to generate a sufficiently high torque about the gimbal perpendicular 
axis rather than its axis[6,9]. Appling a positive torque to the yaw channel will vary both 
angles positively. Meanwhile, a positive torque in the pitch channel implies a negative 
variation in the yaw angle and positive one in the pitch angle. The rule base was constructed 
so that it represents a human expert in the loop. For instance, one rule that a human may use 
to control the system is "if the pitch angle is less than the set point ( 2θe is positive) then 

1τ should be positive" an other rule that would represent more detailed information is "if that 
angle is less than the set point and approaching that point very fast a negative torque may be 
applied to make shore that we don’t over shoot the set point. The rule base is indicated in 
Table (1). Full matrix fuzzy controller was implemented to the LOS system. The system 
performance was satisfactory; however, the performance is not guaranteed to be optimal. This 
is due to the fact that the controller parameters were set based on the designer knowledge 
about the system behavior. 

Rule base for the yaw angle direct controller C11 

    e 
c 

NB NS ZE PS PB 

NB PS PB NB ZE PS 
NS NS NB NB PB PS 
ZE PS PO ZE PB NS 
PS NS ZE PS PB NB 
PB PB ZE PB PS NB 

Rule base for the yaw angle direct controller C22 
 

    e 
c 

NB NS ZE PS PB 

NB NS PB PB PS NS 
NS PS PB PS NB NS 
ZE NB PS ZE NS PS 
PS PB PB NS ZE PB 
PB NB PB NS NS PB 

Rule base for the yaw angle direct controller C21 

    e 
c 

NB NS ZE PS PB 

NB PS PS NB NS PS 
NS NS ZE NS ZE PS 
ZE PB PS ZE NS NS 
PS NB PB PS PB NB 
PB PB PB PS NS NB 

Rule base for the yaw angle direct controller C12 
 

     e 
c 

NB NS ZE PS PB 

NB NS NS PS PS NS 
NS PS PB ZE PS NS 
ZE NB NB ZE PS PS 
PS PB ZE NS PS PB 
PB NB NB NS PS PB 

Table  1:  Rule-bases of the full matrix fuzzy controller for the LOS stabilization system 
(NB: Negative big, NS: Negative, ZE: Zero, PS: Positive, PB: Positive big) 

 
4. FMRL CONTROLLER STRUCTURE 
A Multi-Input Multi-Output Fuzzy Model Reference Controller (MIMOFMRLC) is proposed. 
The controller provides the non-linear control surface that compensates for system non-
linearity and decouples the interaction between its two channels. Fuzzy model reference 
control adopts the same principles of Model Reference Adaptive Control (MRAC) [7] that 
proved stability and high capabilities of disturbance rejection.  It was first introduced as a Self 
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Organizing Fuzzy Controller (SOFC) by Procky and Mamdani [10]. Pasino et. al. developed a 
simplified algorithm and was referred to as Fuzzy model reference learning control. The term 
learning verifies the fact that algorithm incorporates a memory that store and recall the control 
behavior. The algorithm was implemented for various types of plant and shows high transient 
and tracking performances. The structure of the FMRLC is as shown in Figure (4). It consists 
of plant model (passive LOS stabilization system), fuzzy controller, reference model, and 
learning mechanism. The controller is responsible of providing the appropriate control action 
to follow the desired set point. The learning mechanism is composed of inverse model and 
knowledge base modifier. The learning mechanism achieves the following: Observes data 
from a fuzzy control system [i.e. ( )kTyr  and ( )kTy ].  Characterizes its current performance. 
Automatically synthesizes and/or adjusts the fuzzy controller so that some specified 
performance objectives are met. These performance objectives are characterized via the 
reference model. The inverse model describes the inverse characteristics of the plant. It 
provides the learning mechanism with preliminary information about how to modify the 
control action to force the system to follow the performance given by the reference model. 
The knowledge base modifier seeks the necessary modification of the controller knowledge-
base (rules of the fuzzy controller) based on the information supplied by the inverse model. 
This modification forces the system to follow the desired set point with the performance that 
matches the one given by the reference model the desired performance can be described for 
both channels by means of reference model. A two-input, two-output learning fuzzy controller 
was used to provide fast adaptation and learning capabilities. This assures stable system with 
a high transient performance. A complicated learning algorithm would slow down the 
learning process and hence, reduces the stability especially for system with high dynamics 
[11-13].   Figure (4) shows the structure of the controller The two controllers have the same 
inputs. The inputs represent the error in the yaw angle (

1θ
e ) and the error in the pitch angle 

(
2θ

e ). It is possible to include the first derivative of 
1θ

e  and 
2θ

e  to the controller inputs to 
reduce the oscillation around the set point. To minimize this oscillation, a derivative control 
action should be included by adding the derivative of the errors 

1θ
e and 

2θ
e  to the inputs of the 

fuzzy controller. For two input fuzzy system, if five memberships functions are assigned for 
each input, the maximum number of rules would be 25 rules (all possible combination of the 
inputs), However, for four inputs fuzzy system, the rules at the rule-base would be 625 rules. 
Hence, the required learning time would increase exponentially and reduces the controller 
performance. To reduce the oscillation yet keep learning simple, a conventional derivative 
controller was added to the main fuzzy controller.  It is assumed that the adaptation process is 
able to compensate for the error between the non linearity of the 1st order dynamics of the 
system and the linearity of the derivative controller. The outputs of controllers are the torques 
of the two motors (τ1 and τ2 respectively). The controller inputs are given by: 

)(1)(*
1)(

1
kTkTkTe θθθ −= , )(2)(*

2)(
2

kTkTkTe θθθ −=                           (16) 

Where )(*1 kTθ , )(*2 kTθ , )(1 kTθ , and )(2 kTθ  represent the desired yaw angle, the desired pitch 
angle, the measured yaw angle and measured pitch angle respectively. Although the inputs are 
the same, each implicit controller (within the MIMO fuzzy controller) has independent input 
scaling factors. The gains, 11 θθ eg , 21 θθ eg  represent input scaling gains of the yaw angle 
controller for the yaw angle error and the pitch angle error respectively. Similarly 12 θθ eg and 

22 θθ eg  are the input scaling gains of the pitch angle controller for the yaw angle and the pitch 
angle errors respectively. Triangular membership functions for both inputs and outputs 
universes of discourse, Zadeh's compositional rule of inference and COG Defuzzification 
were implemented for the fuzzy controllers and the inverse models. 
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    Fig. (4) MIMO FMRLC structure 
  
4.1 Adaptation Mechanism 
The centers of the output membership function for each controller are subjected to the 
adaptation. The centers of the output membership functions for the yaw angle controller and 
the pitch angle controller are given by:  
    )()()( 2211

kTpgTkTbkTb pii θθθθ +−= ,    )()()( 1122
kTpgTkTbkTb pii θθθθ +−=                    (17) 

where pg
1θ

, pg
2θ

, )(1 kTpθ , and )(2 kTpθ are the adaptation gain of the yaw angle, the 
adaptation gain of the pitch angle, the output of the yaw angle inverse model, and the output 
of the pitch angle inverse model respectively. The inverse model of the yaw and pitch 
channels are fuzzy inverse models representing the inverse dynamics of the yaw and the pitch 
angles respectively. Each inverse model was designed separately assuming only the coupling 
relationship between the state variables 1θ , 2θ  and the control actions ( )21,ττ . The rule-base for 
the two inverse models are carefully designed.   The inverse model inputs are given by 

)()()( 111
kTkTky refe θθθ −= ,  

T
TkTyekTye

kyc
)()(

)( 11

1

−−
= θθ

θ                                   (18)  

)()()( 222
kTkTky refe θθθ −= ,   

T
TkTyekTye

kyc
)()(

)( 22

2

−−
= θθ

θ                                  (19) 

where ref1θ , 1θ , ref2θ and 2θ  are the output of the yaw reference model, the measured yaw 
angle, the output of the pitch reference model, and the output of the pitch angle model 
respectively. The reference model for each controller was selected according to the required 
performance of both channels taking into consideration the system limitations (maximum 
torques and system parameters). To avoid generating control actions exceeding the torque 
limits of the system the following equations were added [11]: 

min1 )( τθ =kTb i if min1 )( τθ ≤kTb i   ,        max1 )( τθ =kTb i if max1 )( τθ ≥kTb i                (20) 

min2 )( τθ =kTb i if min2 )( τθ ≤kTb i         max2 )( τθ =kTb i if max2 )( τθ ≥kTb i                               (21) 
where )(1 kTb iθ  and )(2 kTb iθ  are the centers of the output membership functions of the yaw 
angle and the pitch angle respectively, minτ , maxτ are the minimum and maximum torque of 
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the two motors respectively. The parameter of the controller were selected using trial and 
error however, some guidelines were used to reduce the time effort spent on obtaining the 
appropriate values of these parameters.  The reference model is a linear second order system, 
with parameters representing desired performance and satisfies the system limitations.   
Uniform distributed triangular membership functions were used for the input and output.  The 
rule base was formed through the knowledge of the system behavior.  The learning coefficient 
is a critical factor to the system stability and performance.  There is tradeoff between fast 
learning capability and system stability with minimum oscillation at steady state.  Large 
learning coefficient enhances transient performance and adapt faster to parameter variations.  
However, system is sensitive to small error at steady state and as a result oscillation behavior 
occurs.  Small learning coefficient provides performance at steady state however; slower 
learning and transient performance are expected. 
 
5. SIMULATION RESULTS 
A prototype for the passive LOS stabilization system has the parameters as follows:  
 A (Kgm2) = 0.0392, B (Kgm2) = 0.0211, C (Kgm2) = 0.0153, D (Kgm2) = 0.0049, E (Kgm2) 
= 0.0019, F (Kgm2) = 0.0018, G (Kgm2) = 0.0036, H (Kgm2) = 0.0057,  J (Kgm2) = 0.0089, 
ωs (rad/s) = 800. 
Series of rectangular pulses was applied to the LOS system as the desired angles in both yaw 
and pitch angles. The frequencies of the inputs were set differently to examine the coupling 
effect at different points. The maximum desired deviation angles were set to 0.1 radians. 
Figure (5) Phase plane of LOS system using full matrix fuzzy controller. The phase plane  in 
Figure (5) and table(2)  shows that the system has a high coupling effect (see subplots c, d, e, 
and f) where a variaton in one channel developed oscillation in the opposite channel. It can be 
noted that the system is stable with satisfactory performance. It can be noted that  the direct 
controller produces the torque in the direction of the desired angle. In addition, the coupling 
controller provides a torque in the opposite channel that aids the direct one to move the 
gimbale to the desired angle. The opposite coupling controller compensates the disturbance in 
the opposite channel due to coupling effect. In general, that fuzzy controller provides stability 
to the system with minimum overshoot and fast transient for both channels. It also reduces the 
coupling effect between the two channels. The control action is smooth and minimal Despite 
of the satisfactory results, it is not guaranteed that the results are optimal. This is due the 
ambiguity of the coupling behavior and the design process that doesn’t use optimal design 
tools. Figure (6) and table (2) shows how the learning mechanism was able to form the 
control surface and to find the decoupling relation between the system states inputs ( )21,ττ and 
output 1θ  and 2θ . It also shows the development of such learning.  The best results of training 
can be achieved by training the system with inputs similar to the ones that will experience 
during the use and implementation phase. After the first  period of training, system 
performances enhanced dramatically.  Figure (6) represents the phase plan of the yaw and 
pitch channels respectively when step changes applied to both channels simultaneously. 
Figure (6 c,d) shows the coupling effect on yaw channel when step change is applied to pitch 
channel and vise versa in Figure (6 e,f). It can be noted that the control algorithm provides an 
asymptotically stable system that approaches the equilibrium point in all cases. The coupling 
effect is minimal even when applying simultaneous changes in both channels. For 
performance comparison purposes and system qualification. They are: (1) Integral absolute 
error (IAE i ) is used to evaluate the system tracking performance (2) Integral square error 
(ISE i ) is similar to (IAE) however it discriminates between systems that have close (IAE). (3) 
Integral time multiple Absolute error (ITAE i ) is used to evaluate system performance with 
the time. (4) Integral absolute control action (IACA i ) is used to evaluate the efficiency of the 
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system.  Table (2) shows that better results were achieved using the FMRLC especially after 
sufficient learning period.  Also by reviewing the IAE and ISE of the fuzzy controller, they 
show that FMRLC gives much better performances 
 
6. CONCLUSION  
A comparative study between the two control algorithms that are designed for the LOS 
system is presented. The study shows that the MIMOFLC provides a more stable system with 
less sensitivity to the coupling effect. It also shows that the MIMOFMRLC is more efficient 
and has a higher performance than the other classical fuzzy algorithms. Fuzzy model 
reference learning controller is similar to the fuzzy controller except, it has two additional 
advantages, (1) it is less dependant on the designer knowledge of the system where the rules-
base of the controller is formed using learning mechanisms. (2) Useful information about the 
controller and hence the system can be achieved after learning through reading the formed 
rules.  It can be noted that the FMRLC is less complicated than the other two controllers. In 
fact this conclusion coincides with the fact that conventional control techniques work better 
for simple linear systems, while fuzzy controllers produce much better results for complex 
nonlinear systems such as the LOS Stabilization System. 
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Figure ( 5) Phase plane of LOS system using full matrix fuzzy controller (a) and (b) for 
channel one and two respectively when applying step inputs to the two channels 
simultaneously, (c) coupling effect of channel two on channel one (d) no coupling effect on 
channel two (e) no coupling effect on channel one (f) coupling effect of channel one on 
channel two 
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                               (f)  
Figure (6) Phase plane of LOS system using FMRLC (a) and (b) for channel one and two 
respectively when applying step inputs to the two channels simultaneously, (c) coupling effect 
of channel two on channel one (d) no coupling effect on channel two (e) no coupling effect on 
channel one (f) coupling effect of channel one on channel two 

  
IACAISE ITAE IAE 

τ2τ1pitchyawpitchyawpitchYaw
Controller

5387.6 2929.4 15.2 8.8 1264.1 1147.3 246 141.7 FMRLC after 
learning 

6062.93744.718.912.21432.41158.7292.5186.4FMRLC before 
learning 

3681.1 6646.920.6 12.2 3636.8 2746.5 338 195.3 Fuzzy controller  
 

Table 2:  Comparison results for pulsed reference signal 
 
 


