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ABSTRACT: 
In this paper, two proposed computational methods of coarse alignment for strap 

down inertial navigation systems (SDINS) are presented. Their associated drift, skew, 
and scale alignment errors are evaluated analytically. Although the computational 
formulas for analytic ground alignment are identical in the ideal case, the error 
characteristics are dependent upon the employed basis. With properly selecting the 
basis to compute the best estimate of transformation matrix, the drift misalignment 
angles of analytic alignment can be made to be equivalent to those, which can be found 
by physical gyro-compassing. 
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NOMENCLATURE 
 
Abbreviations 
 
SD = strap down 
INS = Inertial navigation system 
SDINS = strap down inertial navigation system  
 
Symbols 
 
g  = Local gravity vector. 

ieω   = Earth turning rate. 
ϕ   = Local geographical latitude. 

ba  = Measurements of accelerometers in body frame 
bω  = Measurements of gyros in body frame. 

I  = Identity matrix 
S  = Alignment error  
φ  = Alignment error 

                                                 
∗ Egyptian Armed Forces 
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I. INTRODUCTION 
 

Initial misalignment is one of the major error sources of inertial navigation systems 
(INS). The initial alignment errors will affect the system error not only in the attitude 
indication but also in the velocity and position information [1-5]. Therefore, prior to normal 
navigation, alignment process must be performed to determine the orientation of the platform 
axes with respect to the navigation coordinate frame. One method for obtaining the initial 
angular orientation is through the use of an external reference by optical means. However, 
this method is very limited to operational environment. Alternatively, for most ground-based 
applications, a self-contained alignment method known as gyro-compassing [2-7] provides 
another operational approach. As a general rule, gyro-compassing consists of two phases, that 
is, leveling and azimuth alignment. The basic principle of gyro-compassing consists of 
feeding signals proportional to the accelerometer outputs or/and velocity error outputs to the 
appropriate level gyros and azimuth gyro. 

The purpose of initial alignment process is to drive the misalignment angles to zero. 
Unfortunately, this goal can never be achieved in a practical system. This drawback is 
deduced from the sensor errors, which cannot be compensated ideally. Initial alignment 
process is of vital important to inertial navigation equipments. Alignment requirement is 
related to the necessity for the transformation of the sensor outputs into the best estimate of 
the attitude, (velocity and position), of the vehicle with respect to the reference navigational 
frame [1-8]. Therefore, poor initial alignment accuracy will end up with poor navigation 
accuracy. Generally speaking, alignment process is divided into three phases: leveling, 
coarse, and fine alignment. The leveling mode roughly establishes level attitude by sensing 
the direction of gravity with respect to the vehicle body axes. Next, the coarse alignment 
mode determines azimuth to within a few degrees by sensing the rotation of the gravity vector 
with respect to the inertial space and to provide a fairly good initial condition for the fine 
alignment processing. Theoretically, an analytical self-alignment method for strap-down 
systems is functionally equal to the physical gyro compassing in gimbaled systems [9]. The 
error characteristics of both systems seem to be identical at steady state in a stationary base. 
An error analysis for an analytic alignment method had been done by Britting [2]. He showed 
that the drift misalignment angles about north and vertical axes are identical with those 
obtained with physical gyro compassing, but a difference exists about the east axis. This part 
stimulates the researchers to study the properties of analytic alignment methods for SDINS. 
Besides, the application of strap down technology has been attracting considerable attention 
nowadays.  
 This paper investigates two analytical/computational methods of coarse alignment for 
SDINS. The two proposed methods are associated with error analysis. The formulas are 
evaluated in a computer simulation with a comparison between them. Finally, the paper is 
terminated by a conclusion section. 
 

II. Problem Formulation and Formulas of Analytical Alignment 
It is well known that the self-alignment requirement is the measurement of two non-

collinear vectors, the local gravity vector g and the earth rate ieω , in both body and 
navigation frames. The local gravity vector and earth rate can be sensed in the body frame by 
the inertial sensors, accelerometers and gyros respectively, which are known in the Earth-
fixed frame [3,6]. For the purpose of this investigation, we assume that the navigation axes 
are aligned with the local-level north, east, and down axes. Then g  and ieω  can be expressed 
in the navigation frame as: 
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 =ng [ ]Tg00          (1) 
 
 =n

ieω [ ]Tϕϕ sincos Ω−Ω 0         (2) 
 
 Where g  and Ω  represent the magnitude of gravity and Earth rate respectively; ϕ  is 
the local geographical latitude.  
 The analytical alignment problem is to build a set that consists of three linearly 
independent vectors [ ]321 VVV  upon body and navigation frames, such that the solution of 
transformation matrix n

bC  can be found.  
 
 [ ] =nVVV 321

n
bC [ ]bVVV 221        (3)  

 
 In general, there are six possible sets, which can be used for achieving the analytical 
alignment purpose [4,5]. However only the following two simple and significant sets, 1B and 

2B  are analyzed here in some detail where 1B and 2B are defined as: 

 
 [ ]ieie ggB ωω ×=1          (4) 
 
 [ ]ggggB ieie ×××= )( ωω2         (5) 
 
 It is quite obvious from (4) and (5) that 1B and 2B are suitable for analytical alignment 
except at the Earth poles. The transformation matrix n

bC  can be directly obtained from (3) as: 
 
 =n

bC [ ] [ ]bn VVVVVV 321321        (6) 
 
Alternatively, since n

bC  is orthogonal, it must satisfy: 
 
 Tn

b
n
b CC )()( =−1          (7)  

 
Therefore n

bC  can also be written as: 
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By substituting the three vectors of 1B  into (8), n

bC  becomes [2]: 
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Let ba and bω represent the measurements of accelerometers and gyros, respectively, and 
define their components in the body frame as: 
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 ba [ ]Tzyx aaa=          (10) 
  
 bω [ ]Tzyx ωωω=          (11)  
 
In practical implementations, bg and b

ieω  are replaced by ba− and bω  respectively. Then using 
(1, 2, 10, 11) the element of n

bC  in (9) can be explicitly expressed as [5,6]. 
 
 
 
            (12) 
 
 
 
 
 Similarly, if the three vectors in 2B  are employed, then n

bC  in (9) can be written as: 
 
 
 
 n

bC =           (13)                    
 
 In this case, the element of second and third rows of n

bC  is the same as (12), whereas 
the elements of first row are changed to: 
                                                                             
                                                                     
            (14)                   
 
 
 Where a  is the magnitude of ba . We can easily see that the elements of the first row 
in (12) and (14) are identical by using the equalities, ga =  and =bba ω. ϕsinΩg  in the ideal 
situation. However, their error characteristics are quite different. 

 
III. ERROR ANALYSIS 
 In the error analysis, we now consider a vector V , which is known in the navigation 
frame and can be obtained by processing the sensor outputs. Ideally, their relationship can be 
written as [9]: 
 
 =nV n

bC bV           (15)                    
 
where n

bC  represents the true transformation matrix. However, it is inevitable that the inertial 
sensing signals will be contaminated with uncertainties in a practical strap down system. 
Therefore, only the computational transformation matrix n

bĈ  and the noisy vector bV̂  are 
available. At the end of alignment process, the relationship (15) has to be rewritten as: 

 
 =nV n

bĈ bV           (16) 
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When the initial alignment process has been completed, n
bĈ  and n

bC  can be related by the 
following formula [2]: 

 
 n

b
n
b CSIC )(ˆ φ−+=          (17) 

  
 Where I  is the identity matrix while both S  and φ  represent the alignment errors. 
The matrix S  is symmetric with the form of: 
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Where the diagonal elements DE,N,i =,iS , represent the scale factor errors and the off-
diagonal elements DE,N,i =,iε , represent the skew misalignment angles. The matrix φ  is anti 
symmetrical with the form of: 
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Where the elements DE,N,i =,iφ , denote the drift misalignment angles. Moreover, bV  is 
perturbed as: 
 
 += bb VV̂ bVδ           (20)  

 
Substituting (17) and (20) into (16), it can be found that, to the first order approximation, 
 
 )( φ−S nV = n

bC− δ bV          (21) 
                                                                
 This is the basic error equation for analysis of analytic alignment methods. In order to 
analyze the alignment error associated with the computational of method-1 in (9) we can 
individually substitute the three vectors of 1B  in (4) for V in (21).   
 Firstly, assume that gV =  and use the fact that bb ag δδ −=  with simple manipulation 
equation (21) can be rewritten as: 
 
 )( φ−S =ng δn

bC− =bg n
bC baδ         (22) 

 
 Secondly, assume that ieV ω=  and use the fact that b

ie ωω δδ =  with simple 
manipulation equation (21) leads to: 
 
 bn

b
b
ie

n
bie CCS ωωω)( δδφ −=−=−        (23) 

 
 Finally, assume that iegV ω×=  and apply the fact that bbb

ie
bb ga ωωV δδδ ×+×−=  thus, 

equation (21) leads to: 
 
 
                                                                                                                                      (24)              
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Denoting the effective sensing errors in the navigation frame as: 
 
 [ ]TDEN
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n aa aaaC δδδδδ ==        (25) 
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 It means that, in general, the alignment errors are composed of the entire strap down 
sensing errors. Now substituting (1, 2, 18, 19, 25, 26) into (22) yields the set of these 
equations: 
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Substituting (1, 2, 18, 19, 25, 26) into (23) yields the set of these equations: 
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Substituting (1, 2, 18, 19, 25, 26) into (24) yields the set of these equations: 
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 Adding equation (35) and (28), the value of Nε  tends to be zero and substituting in 
equation (28), the value of Nφ  can be found. Adding equation (27) and equation (32), we can 
determine the value of Eε  then substituting in equation (27). Thus, the value of Eφ  can be 
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calculated.  Adding Eq. (31) with (33) we found that the value of Dε  tends to be zero and 
then, substituting in Eq. (33) the value of  Dφ  can be found. 
 Finally, the analytical alignment errors can be uniquely determined. The drift 
misalignment angles can be obtained as: 
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φ =           (36) 
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 These drifts had been presented in the literature [2]. It is observed from (37) that not 
only the north accelerometer error but also the vertical accelerometer and azimuth gyro 
uncertainties will include the east level error. This situation is quite different than that 
occurred in a gimbaled system. It should be noted that an orthonormalization process does not 
have effect on these drift errors. Although an orthonormalization process can eliminate the 
skew and scale factor errors, they are also presented here for completeness. The skew 
misalignment angles can be obtained as: 
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which shows that, the east skew error dose not equals zero.  
The scale errors are given by: 
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 Similarly, the alignment errors associated with the computational method in (13) can 
be obtained by substituting the three vectors of 2B in (5) for V . After simple manipulations, 
the drift misalignment angles can be obtained as: 
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 It is obvious that the drift errors, (44-46) are identical to those obtained with physical 
gyro compassing. All of the skew misalignment angles are identically zero, i.e. 
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 0=== DEN εεε ,         (47) 
 and the scale factor errors are given by 
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 As compared with (38), (46) is not corrupted by vertical accelerometer and azimuth 
gyro uncertainties. In practice, the azimuth gyro uncertainty will dominate the east level error 
of (38). Hence, the computational of method-2 in (13) is better than that given in (9). 

 

4. SIMULATION RESULTS 
 A simulation program is carried out for verification purposes. Extensive simulation 
results are at various parameters are conducted. The following case study is chosen to be 
presented here. The following parameters are utilized while the drift misalignment angles are 
resulted: Latitude angle 030=ϕ ; pitch angle 030=θ ; yaw angle 045−=ψ ; roll angle 010=γ .  

The sensor error is chosen constant as: gyro drift h/. 010=ε , accelerometer bias 
gµ100=∇ ; measurement noise  , 010 0 h/.=εσ  and gµσ 10 =∇ , total time 1min and sampling time 

0.1 sec.  
 The two matrices 1φ  and 2φ  represents the drift misalignment angles by using method-
1 and method-2 are recorded as follows: 
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 The two matrices 1S  and 2S  represents the scale factor errors and skew misalignment 
angles by method-1 and method-2 as follows: 
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 Table (1, 2) shows the drift misalignment angles by using both proposed methods and 
the estimated attitude angles via the coarse alignment: 
 
 
 
Table 1. Drift misalignment angles 
 φN [min] φE [min] φD [min] 
Method 1 -0.1541 -6.8651 -11.7442 
Method 2 -0.1541 -0,5485 -11.7442 
 
Table 2. Estimated attitude angles 
 Yaw [deg] Pitch [deg] Roll [deg] 
Method 1 -44.8007 30.0753 9.9095 
Method 2 -44.8487 29.9917 10.0054 
Actual -45 30 10 
 

V. CONCLUSIONS 
A few general requirements for analytic self-alignment are considered. Two useful 
computation methods of coarse alignment for strap down inertial navigation systems are 
presented. Their associated drift, skew, and scale alignment errors are evaluated analytically. 
Although the computational formulas for analytic ground alignment are identical in the ideal 
case, the error characteristics are dependent upon the employed basis. The alignment 
computational method 2 is superior to method 1 practically because its east level error is not 
corrupted by gyro uncertainty. Moreover, the drift misalignment angles of method 2 are 
equivalent to those obtained with physical gyro-compassing. These results are helpful in 
design of ground coarse alignment process.  
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