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I. Introduction 

 The alignment of a strap down inertial navigation system (SDINS) determines the 
transformation matrix between body frame and navigation frame (local-level frame) [1-8]. 
The stationary initial alignment, which consists of a coarse alignment and a fine alignment, is 
usually performed when a vehicle is at rest. In this case, if low-grade sensors are used for cost 
reduction, it is virtually impossible to detect small attitude errors because its accuracy heavy 
depends on inertial sensors employed in alignments. For some applications, the coarse 
alignment is only performed or the initial attitude is directly obtained from other sources such 
as a stored attitude or a master inertial navigation system (INS) in order to reduce the initial 
alignment time [8]. In cases mentioned above, the initial attitude errors may be very large. 
Large attitude errors do not guarantee the accuracy and reliability of a system after beginning 
a navigation mode. Gimbaled INS (GINS) errors propagation models and strap down inertial 
navigation units have been subject of significant research during the past few years [1-4]. 
Two main approaches are used to derive these equations: psi-angle approach and perturbation 
approach [2, 4, 7]. The INS alignment and calibration tasks are usually based on these 
models. 
 In the literature, the initial orientation errors are assumed to be small, i.e. less than 5 
degrees. The system can then be approximated with linear models due to the small angle 
assumption. To satisfy these requirements good quality gyros and external tilt and heading 
information has to be used. So far, few works attempted to model large angle errors to be 
considered, for example, large heading uncertainty of inertial measurement unit (IMU) 
orientation. In [11] and [6] an approximate extended psi-angle model with large heading 
misalignment is presented. It uses four states to describe the three-psi-angles. The model 
extension is very involved, and to the best of the author knowledge it has not been used in any 
practical application. Ref [5], introduced a Kalman filter mechanization for INS air star 
system. This approach uses two non-linear states to describe one heading angle. It still 
requires coarse ground alignment information within few degrees to estimate the wander 
angle. Ref [12] presents an INS error model considering large heading uncertainty and small 
tilt misalignment errors using a perturbation approach. 
 In this paper a general non-linear psi-angle approach is presented that dose not 
requires coarse alignment. In this model, the azimuth misalignment angle is assumed large. 
The attitude and velocity error models are also presented for strap down inertial navigation 
system (SINS). Three different Kalman filter algorithms are utilized based on the SDINS 
nonlinear error model and used to solve the non-linear data fusion problem. The presented 
model is validated with a set of experimental results of stationary alignment and in-flight 
alignment using kinematics trajectory data to estimate all the parameters of inertial navigation 
system needed for the alignment and calibration. Finally, the paper terminated with 
conclusions. 
 
II. Non-linear Error Model for SDINS 

 The main objective of alignment process for a strap down system is to determine the 
direction cosine matrix n

bC , which defines the relationship between the inertial sensor axes 
and local geographic frame [5, 8]. The measurements provided by the inertial sensors in body 
axes may be resolved into the local geographic frame using the current best estimated of the 
body attitude with respect to this frame. The resolved sensor measurements are then 
compared with the expected turn rate and accelerations to enable the direction cosine to be 
calculated correctly. In other words, SDINS uses mathematical platform rather than physical 
one (the mathematical platform is determined by n

bC ). The attitude error equations may be 
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determined by disturbance of nominal equation, but for GINS the attitude error equations 
could be figured out by using the actual error angles [8].  
 Let, the misalignment angle ψ  between platform frame (p-frame) and navigation 
frame (n-frame) is defined as: 
 [ ]Tzyx ψψψψ =  
 
 and Ψ  is the skew symmetric matrix of psi-angle.  Let the following symbols stand for:  
 ; )cos(c ; )cos(c ; )cos(c  ; )sin(s ; )sin(s ; )sin(s zzyyxxzzyyxx ψψψψψψ ======  
Then, the direction cosine matrix (DCM) from n-frame to p-frame can be defined as [7]: 
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II.1 Velocity Error Model 

 The SDINS true velocity error in navigation frame is given by [7,8]: 
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Where, n
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bf C,  are both the specific force in body frame and transformation matrix from body 
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.

       (3)  
Where, p

b
n
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 nc gg ,  are the gravity vectors resolved in the computational frame and navigation 
frame respectively. c

cV  is the velocity vector resolved in the c-frame and can be calculated as: 
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Where, b∇ is the specific force error due to accelerometer bias in b-frame, and  
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Subtract Eq. (2) from Eq. (3) yields the SINS velocity error equation: 
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The above equation as a function of estimated specific force bf̂  could be written as: 
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 Let pn
p

bpbn
b ff ∇=∇= CC  , ˆˆĈ n

b and when the attitude error is small then, the 

transformation matrix p
nC can be expresses as: 

 [ ]×Φ−= Ip
nC           (6)                           
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 When the attitude error is small, as we know from Eq. (6) the small disturbance 
equations can be written as follows: 
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II.2 Attitude Error Model 
 The psi-angle model for small angle errors was presented before in [13]. This paper 
presents a new psi- angle model that can be used with large angle errors. 
The true transformation matrix n

bC can be written as: 
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where, [ ]×b

ibω  is the skew symmetric matrix and b
ibω  is the computed angular velocity of body 

with respect to inertial frame. 
The matrix p

bC  is obtained using measured gyro rates b
ibω̂  provided by the IMU: 
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Where, p
bC  is the transformation matrix from body to platform frame (or written as n

bĈ ); 
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n
in δωω ,  is the true angular velocity and angular velocity error of 

navigation frame with respect to inertial frame. 
b
ibω̂  contains gyros drift errors b

ibδω  that can be large, specially when working with low cost 
IMU. 
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From Eqs. (11, 12), we get: 
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Right multiply b
pC  to the above equation yield: 
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It can be proved that 
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The three components of the Euler angle 
.
ψ  is not orthogonal so that, the relation between 

.
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and p
npω  can be written as [8]:  
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 In alignment, if we consider small 
.
ψ  and if the horizontal misalignment tilt angles 

yx ψψ ,  are also small then, the angular velocity of platform with respect to navigation frame 
will be as: 
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When the horizontal misalignment angles yx ψψ , are small as we know from Eq. (23) the 
SINS attitude error equation can be written as: 
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 Then, Eq. (24) is the general psi-angle error model that can be used for small or large 
angle errors for SINS. When the three misalignment angles are small, then the attitude error 
model using Euler angle can be simplified to Ψ angle as: 
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II.3 GINS Nonlinear Error Model  

If yx ψψ , and zψ are small, then Ψ+= In
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and Eq. (20) can be converted to small psi-angle error model, which is widely used in many 
applications [7]: 
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 In the case of large misalignment in heading and small misalignment in tilt angles, 
large zψ and small xψ and yψ angles are resulted. With this assumption p

nC  can be 
approximated with [7]: 
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 In the most INS alignment, the position error is not considered. So, the error angle 
between the computational frame and navigation frame caused by position error is equal zero. 
It means that, computational frame is aligned with navigation frame. So, the projection error 
of ,n

ieΩ g  is equal zero. i.e., 
  , 0=Ωn

ieδ 0=ngδ  
Then, the platform velocity and attitude error equations model with large misalignment in Eq. 
(4,24) can be written as: 
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en

n
ie

n
t

n
b

n
b

p
n

.
    (29) 

 =≈ p
np

.
ωψ ( ) b

ib
p
b

n
in

n
in

p
n CC δωδωω −+−I       (30) 

Where, n
enδω  is the angular velocity error of navigation frame with respect to earth frame and 

it can be written as [9]: 
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Where φ  is the local geographic latitude angle, NM RR ,  is the curvature of the earth radius. 
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III. Stationary Base Alignment Mode 

 In the stationary alignment we usually suppose that the position is known and fixed. 
So, the values of velocity vector n

tV  and angular velocity vector n
enω equal zero, then 

equations (29) and (30) can be written as: 
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 The value of angular velocity of the earth and the specific forces in navigation frame 
can be written as: 
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 Substituting equations (33, 34) into equations (31, 32) then the platform error model 
on the stationary base can be written as: 
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IV. In-Flight Alignment Mode 

 In-flight alignment, we usually get the INS velocity error equation from the 
acceleration measurement pf̂  then, from Eq. (5) we get: 
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gVV

fIV bb

δδω

δωδδ

+×+Ω−×

+Ω−∇+−=   

The error model in-flight augmented with sensor errors can be written as: 
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A local level ENU (East-North-Up) frame is used as the navigation frame, vertical channel 
included. The state vectors consists of: 
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The linear part coefficient matrix )t(A is the system dynamic matrix defined as [9], while the 
nonlinear part ( )tx,q  can be computed as: 
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System Jacobian matrix can be computed as: 
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V. Filtering Mechanization 

 In this section we simulate SINS large azimuth misalignment angle on both the 
stationary base and in-flight alignment by using nonlinear discretization, extended KALMAN 
filter and iterative filtering. 
 
V.1 Nonlinear discretization 

 To be convenient, we write the nonlinear system states equation as: 

 )tw()t,()t(
.

+= xfx          (41) 

Where ),( txf is the nonlinear function, )w( t is the process noise. The variant matrix: 
 [ ])t(w)tw(E)t(Q T=  
 Let t∆  is the sampling time, and the solution of the scalar differential equation using 
Taylor expansion of ( )∆tt +x : 
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 Let ( )tt  ),t( 1k ∆+== + xxxxk , ignore 2nd order derivative term, the discretization 
equation can be written as: 
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 kw is the discretization process noise, and variant matrix [ ]T
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 ( ) t.t ∆= QQk           (44)  

We use the two horizontal velocity error measurements, and then the measurement equation 
can be written as: 
 kkkkz vxH +=          (45) 
Where kv  is the measurement noise. Measurement matrix can be written as: 
 [ ]8222 0     ××= IH          (46) 
 
V.2 Extended KALMAN Filter (EKF) 

 To use extended KALMAN Filter we must linearize the nonlinear equation because 
the measurement equation is linear [8,13]. So, we only need linearized system equation. Let 
Eq. (43) can be rewritten as: 
 [ ] kkk xFx wk,1 +=+          (47) 
Where 
                                                                           (48)  
 
Let t∆  is small, the transition matrix with one step can be written as: 
 
                                                                           (49) 
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So, the extended Kalman Filter can be programmed as: 
 
 
 
 
 
  
 
 
 
 
 
V.3 Iterative filtering (IKF) 
 

 
 
 
     
The transition matrix with one step can be written as: 
 
 
 
 
VI. Simulation Results  

 A simulation program is carried out to validate the alignment accuracy associated with 
the error models. The following parameters are considered in the comparison study; the initial 
attitude angles are chosen equal zero; the constant and random biases of each accelerometer 
are chosen as gµ100 and gµ5  respectively, and the constant and random drifts of each gyro 
are chosen as h/02.0 0 and ho /01.0  respectively. The measuring error of velocity is 

m/s 1.0 and the system measured noise smV /01.=δσ . The local latitude of SINS place is o30 . 
The sampling time is chosen to be msec 50 . In the following two case studies are 
demonstrated, the stationary alignment simulation and in-flight alignment simulation.  
Stationary alignment simulation 

 The initial pitch and roll angle errors chosen as 01 , yaw error equal 020 , we used 
nonlinear error equation and small disturbance equation separately, alignment time equal 

sec 300 . We used nonlinear model and EKF, then the estimated error of the horizontal error 
angle and azimuth error angle are shown in Fig (1), and Fig (2) showing the estimated 
accelerometer biases and gyro drift. Table (1) shows the effect of the variation of initial large 
azimuth misalignment angle on the static attitude error by using the EKF, IKF, and linearized 
Kalman filter (LKF). 

Table (1) 
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Fig (1) Estimated Attitude error angles 
 

Fig (2) Estimated sensor bias and drift 

 
In-flight alignment Simulation 
 From the From the trajectory data, under the assumption firstly, the missile flight is 
linear and secondly, with horizontal level maneuver with max heading variation chosen as 

030 . The missile constant velocity m/s 400 , flight direction angle chosen as o60 , and the local 
latitude of SINS place is 030 .  The initial pitch, roll angle errors chosen as 01 , and heading 
error chosen as 010 . The total time of alignment equal sec 600 . We used nonlinear error 
equation and small disturbance equation for in-flight alignment. Table (2) shown the static 
values of attitude error angles by using the different model of Kalman filters (EKF, IKF and 
LKF) in the case of linear flight and with turn maneuver. 
 Fig (3) shows the estimated errors of the horizontal error angle and azimuth error angle in the 
case of linear flight path. Fig (4) shows the estimated errors of the horizontal error angle and 
azimuth error angle in the turn maneuver. Fig (5,6,7) and Fig (8,9,10) shows the static values 
of attitude error angles in the linear flight and with level maneuver using EKF respectively. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig (3) Estimated horizontal & azimuth Fig (4) Estimated horizontal & azimuth error angle 
with turn maneuver 
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Fig (5) Estimated Attitude angle with linear flight Fig (6) Estimated Attitude angle with turn maneuver 
 
Conclusion  

 This paper presents a general nonlinear psi angles model that dose not require coarse 
alignment. In this model, the azimuth misalignment angle is assumed large. The velocity error 
model is also presented. In this paper SINS error model is presented, which can be used to 
design an alignment filter. Three different Kalman filter are designed based on the SINS 
nonlinear error model. The model presented was validated with a set of experimental results 
of stationary alignment and In-flight alignment using kinematics trajectory data to estimate all 
the parameters of inertial navigation system needed for the alignment and calibration. These 
results are helpful in design of stationary alignment process to improve the performance of 
the INS alignment during In-flight mode. 
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