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ABSTRACT: 

A ducted fan has been constructed at California Institute of Technology, in order to provide an 
experimental test-bed for research and development of different control techniques for 
Uninhabited Combat Aerial Vehicles (UCAVs). It has many of the characteristics of existing 
flight control systems and its identification experiments have shown that its model is correct 
near hover and successful control designs also support this conclusion. This paper presents a 
comparison between the application of one of the nonlinear Model Based Predictive Control 
techniques (MBPC), which is called Non-Linear Quadratic Gaussian Predictive Control 
(NLQGPC), to two different representations of the ducted fan hover model. The paper also 
provides an insight into the strengths and weakness of each algorithm and into the types of 
problems, which limit the applicability of those algorithms. 
 

Key words: Model Based Predictive Control (MBPC), Non-linear Quadratic Gaussian 
Predictive Control, State-Dependent, Linearization Around Trajectory (LAT), Flight 
simulation, Caltech ducted Fan, Uninhabited Combat Aerial Vehicles (UCAVs). 

 

1. INTRODUCTION 
 

A distinguishing feature of aerospace applications is the large envelope of operation regimes 
in which the process is usually highly nonlinear and has different characteristics from one 
operating condition to another. The process of designing flight control systems has been 
carried out traditionally by using linear systems analysis and design tools due to the 
availability of analytic solutions. However, in order to achieve tactical advantages, modern 
fighter aircraft strive towards performing maneuvers outside the region where the dynamics of 
flight are linear, and the need for nonlinear tools arises. 

 

* Egyptian Armed Force 

The high performance requirements of aerospace applications have always attracted the 
attention of researchers developing new advanced control algorithms. That is why in this 
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paper, we investigate MBPC as a new framework for nonlinear flight control design. Because 
of the computational burden associated with the earlier MBPC techniques, applications of 
such techniques were prohibited for aerospace applications. This computational burden was 
resulted from utilizing the quadratic programming methods in solving the minimization 
problems numerically. In this paper, explicit optimal control laws are used, which can be 
solved analytically, results in removing the need for quadratic programming, thus can deal 
with the relatively fast dynamics systems. 

This paper describes an attempt to apply MBPC to the design of a flight control system and 
presents a comparison between the application of one of the nonlinear MBPC techniques, 
which is called Non-Linear Quadratic Gaussian Predictive Control (NLQGPC), to two 
different representations of the ducted fan hover model. The first representation has a state-
dependent model structure, while the second one is the model linearized around trajectory. 
The comparison provides us with an insight into the strengths and weakness of each algorithm 
and into the types of problems, which limit the applicability of those algorithms. 

The paper is organized as follows: In Section 2, the configuration of the ducted fan is 
described and its dynamics is discussed. Section 3 gives a description of the two algorithms of 
NLQGPC using the two different model representations. Nonlinear simulations of the closed-
loop system with the obtained controllers are presented in Section 4. In Section 5, a 
comparison between the two algorithms and a discussion of the types of problems, which 
limit the applicability of these algorithms are carried out. Finally, this paper concludes with a 
brief summary in Section 6. 
 
 

2. CALTECH DUCTED FAN MODEL 

 

The Caltech Ducted Fan is a small flight control experiment designed for research and 
development of nonlinear flight guidance and control techniques for UCAVs. It is a scaled 
model of the longitudinal axis of a flight vehicle [1]. Test results validate that the dynamics 
replicate qualities of actual flight vehicles, i.e. its dynamics are representative of either a 
Vertical/Short Take-Off and Landing (V/STOL) aircraft such as a Harrier in hover mode, or a 
thrust vectored aircraft such as F-18 HARV and X-31 in forward flight [2].  

As shown in Figure 1, the fan is composed of a variable speed electric motor, which drives a 
four-blade propeller. The motor and the propeller assembly are bolted inside a wooden duct 
which has two flaps attached at the end. These flaps allow the thrust to be vectored from side 
to side and even reversed. The ducted fan engine is mounted on a rotating arm, which limits 
motion to three degrees of freedom: one rotational and two translational, approximately on 
the surface of a sphere defined by the arm. With this geometry, the ducted fan is completely 
controllable with just the vectored thrust. While this experimental system is considerably 
simpler than a real vectored thrust aircraft, it has many of the basic characteristics of more 
complicated flight control systems [1]. 

The full description of the construction of the Caltech ducted fan and the derivation of its full 
nonlinear model are detailed in [3]. In this paper, the planar model of the fan in the hover 
flight mode that ignores the stand dynamics is utilized. The equations of motion for this 
planar may be written as: 
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Figure 1: Caltech ducted fan 
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where ),( yx  denote the position of the center of mass of the fan, while θ is the rotation of the 
fan about the boom axis. Figure 2 shows the simple planar model of the ducted fan.  

Figure 2: Planar ducted fan model 

 

We assume that there are two forces acting on the fan: f1 is perpendicular to the axis of the fan 
acting at a distance r, while f2 is parallel to the axis of the fan. Let m, J, and g be the mass of 
the fan, the moment of inertia, and the gravitational constant respectively. Redefine the inputs 
so that the origin is an equilibrium point of the system with zero input. Letting v1 = f1 and v2 
= f2 – mg and modeling the drag terms ),( ,, ydxd cc  as viscous friction with d being the friction 
coefficient, the equations become:  
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These equations are referred to as the planar ducted fan equations. Using standard rigid body 
mechanics, the nonlinear state space model for the ducted fan can be easily constructed, 
which is represented by the following general equation: 

 

))((
))(),((

tgy
tvtf

ξ=
ξ=ξ&

        (3) 

 

 where [ ] [ ]21, vvvyxyx TT =θθ=ξ &&& .  

 

The numerical values for the parameters of this model are given in [2]. 

 

 

3. NONLINEAR QUADRATIC GAUSSIAN PREDICTIVE CONTROL 

 

The NLQGPC is an extension of the LQG approach to nonlinear predictive control. This 
section describes the algorithms of applying the NLQGPC to the two different model 
representations: the state-dependent model, and the model linearized around trajectory. 

 
3.1 State-dependent Model Algorithm 
 

Equation (3) can be transformed into an alternative representation, with a linear-like structure 
having State-Dependent Coefficients (SDC) in the following form: 
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       (4) 

where 
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The coefficients of matrices ))(( tA ξ  and ))(( tB ξ  are given in Table 1. System (4) is then 
discretized with sampling period Ts and the integral action is incorporated as follows:  
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The subscript n denotes discrete time where snTt = , and 1−−= nnn vvu  is the control 
increment. 

At each iteration, the predictions of the future state and control are used, instead of the future 
state and control which are not available, to recalculate the state-dependent state-space 
matrices within the algorithm’s prediction horizon N. To simplify notation, the final matrices 
are denoted as An, Bn, C. Thus by computing a prediction of the future trajectory, the 
nonlinear system response is approximated by a known time-varying linear system. From 
these future state-space matrices, we calculate the following matrices as follows: 
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We assume that after a long prediction horizon N, the state-space model matrices will be 
constant i.e. become time-invariant system. Therefore it is possible to obtain a solution for the 
Difference Riccati Equation (DRE) at that time n+N and to then use it as a steady-state 
solution for solving the DRE backwards to n=1. Finally the optimal control law is calculated 
as follows: 
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where N1i0i
E ..., =≥Λ  and 1N1j0j

U −=>Λ ...,  are weighting matrices and N ≥ 1 is an integer 
number. Rn+1,N is a vector containing current and future values of setpoint rn. βn is constructed 
from the matrix )(ξB , given in Equation (5), as follows: 

 

[ ]00 LTT
n B=β        (12) 

 

Nn,Θ  denotes the transition matrix for the following reference signal model: 
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where 1
1

~
+nH  and 2

1
~

+nH  are the solutions of the coupled Riccati equations. See [4] for a detailed 
derivation of this algorithm. The optimal solution (11) is obtained from minimizing the 
following infinite performance index: 
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As any MBPC technique, at each iteration, only the first element of the calculated control 
vector is applied to the plant, but unlike other MBPCs, the remaining part of the control 
vector is used to predict future states (and consequently system matrices) by employing an 
appropriate numerical integration method. This idea is borrowed from Kouvaritakis et al. [5]. 

 

 
3.2 Linearized Around Trajectory Model Algorithm 

 

An approach to nonlinear predictive control, utilizing the optimal control trajectory, 
calculated in the previous time instant of the control algorithm, was employed by 
Kouvaritakis et al. [5]. An extension of the previous optimal trajectory to the current time 
instant was referred by these authors as the “tail”. In this approach, the system was linearized 
around this trajectory and then the linearized time-varying system was employed to obtain the 
optimal control, which is calculated as a perturbation from the “tail” trajectory. In Lee et al 
[6] a similar methodology, employing linearization at points of the seed trajectory was 
introduced, using a discrete time model representation of the system.  

This is one of the steps involved in the underlying control algorithm, where at each iteration, 
the predictions of the future state and control are used, instead of the future state and control 
which are not available, to recalculate the trajectory dependent matrices by discretizing the 
model (3) with sampling period Ts then linearizing it around a particular operating point 

),( nn vξ  on the predicted trajectory, and finally the integral action is incorporated as in 
Equations (6,7). The resulting system becomes in the form:   
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To simplify notation, denote the matrices from equation (15) as nn AA = , and nn BB = . 
From these trajectory dependent matrices, we calculate the matrices Φn,N and Sn,N as given in 
equations (8, 9). The cost function is given by: 
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which is minimized and the optimal solution is obtained as: 
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where Rn+1,N is the future setpoint vector for the model LAT after taking into account that the 
predicted trajectory differs from the actual one according to equation (16). 

After calculating ∆Un,N-1, Un,N-1 and consequently Vn,N-1 are calculated. The first element vn of 
Vn,N-1 is applied to the plant, while the remaining part of Vn,N-1 is used to predict future states 
(and consequently outputs) in the next iteration, as mentioned before. See [7] for a detailed 
derivation of this algorithm. 

 

 

4. SIMULATION RESULTS 

Comparison between the two controllers is performed in terms of the rise time/fall time, the 
settling time, the percent overshoot/undershoot, and the control effort. The setpoints for all 
the monitoring variables ( x , y, θ) are set to zero. The following tuning parameters are kept 
constant for the underlying controllers:  the prediction horizon N = 6, the sampling time Ts = 
250 ms, the number of iterations of the Difference Riccati Equation (DRE) is set to 20, and 
the initial conditions ξT = [4.7655 1.3444 –3.1416 1.222e-5 1.2949e-3 1.4266e-2]T

 and  vT = 
[5.1251e-6 –43.414]T. Asymptotic stability is ensured by augmenting the controllers with the 
satisficing approach [8], where the candidate Control Lyapunov Function (CLF) is given as:  

 

ηΨη=η TV )(         (19) 
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η is the state of the augmented plant-reference model after the integral action is incorporated, 
and the positive definite matrix Ψ  is chosen as follows: 
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and µ = diag{3, 7, 10}. 

For the state-dependent model algorithm, the weighting matrices are set to ΛE = diag{0.75, 
100, 20}, and ΛU = diag{2, 0.01}, whilst for the LAT model algorithm they have the 
following values ΛE = diag{3, 7, 45}, and ΛU = diag{0.833 0.005}.  

The closed-loop responses for the NLQGPC implementations based upon the two approaches 
are plotted in Figures (3-7), where the solid line responses relate to the SDC model form 
approach. 
Figure 3 displays the responses of the x-position of the ducted fan, where it can be seen that 
the NLQGPC-SDC exhibits the same fall time tf, and almost the same percent undershoot (% 
U.S.), but with shorter settling time ts compared to the performance of the NLQGPC-LAT, as 
listed in Table 2. The responses of the z-position of the ducted fan are shown in Figure 4, 
where the NLQGPC-SDC exhibits much faster fall time and quicker settling time than the 
NLQGPC-LAT, but displays more than 20 times higher value of percent undershoot. The 
behaviour of the z-position for the NLQGPC-LAT is non-smooth at 0.75 s, due to the 
coupling between states, which increases its fall time. Figure 5 shows θ  responses, where for 
the NLQGPC-LAT, it displays double the rise time rt  compared to the performance of the 
NLQGPC-SDC, but exhibits almost no percent overshoot (% O.S.), and shorter settling time. 
For the NLQGPC-SDC, the shorter rise time results in more oscillatory response with a 
maximum percent overshoot of 21.535 %.  

Figures 6 and 7 show the trajectories of the two control inputs 1v  and 2v , where the control 
effort of 1v  is almost the same for both controllers, whilst the control effort of 2v  is much 
lower in case of the NLQGPC-LAT than the NLQGPC-SDC. 

 

 

5. COMPARISONS AND DISCUSSIONS 

 

5.1 Tracking Performance 

The tracking performance represents the most visible measure. Although from the simulation 
results, both algorithms are capable of achieving high degree of tracking performance and 
prove their capabilities to be applied to fast dynamic systems, the LAT approach can produce 
slightly better performance NLQGPC controllers than the SDC approach. 
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5.2 Applicability to Different Plants 

In case of the state-dependent model algorithm, some difficulties arise when trying to 
transform a general nonlinear model (3) to the SDC form. First, the lack of a systematic 
procedure for selecting, among the infinite possibilities, a single parameterization for matrices 

))(( tA ξ  and ))(( tB ξ , which achieves acceptable performance. Second, this method requires 
the pair )))(()),((( tBtA ξξ  be point-wise controllable in the linear sense for all the state ξ , and 
due to the non-uniqueness of ))(( tA ξ  and ))(( tB ξ , different choices of ))(( tA ξ  and ))(( tB ξ  
may yield different controllability matrices and thus different point-wise controllability 
characteristics. Third, different ))(( tA ξ  choices yield different locations of the system 
eigenvalues, and consequently different  “dynamic structure” of the physical system. Fourth, 
numerical problems can arise when one state difference equation is parameterized in such a 
way that is nearly the same as another, i.e., a multiple of the other.  

All of these difficulties must be taken into consideration if the plant models are affine 
nonlinear systems, as in system (2). For inherently nonlinear systems in which the input 
variables may appear in non-affine forms, as in aircraft models, chemical reactions, PH 
neutralisation and distillation columns, obtaining SDC forms are extremely difficult. But in 
case of the LAT model algorithm, the nonlinear plant, whatever its representation, is 
linearized around the tail and this linearized time-varying system is employed to obtain the 
optimal control. Thus this algorithm can be applied to any nonlinear system.  
 
 

6. CONCLUSIONS 

 

This paper described an attempt to apply a nonlinear predictive control technique to a real fast 
dynamic flight control system. It proposed two algorithms using two different plant 
representations for the same nonlinear predictive control technique. The first representation 
has a state-dependent model structure, while the second one is the model linearized around 
trajectory. The two algorithms proved their capabilities of both achieving high degree of 
tracking performance and dealing with fast system dynamics.  

Discussion on the strengths and weaknesses of each of these algorithms has concluded that 
the requirement on the plant model to be described in a SDC form is considered to be a 
limitation to design problem for particular application. In other words, these methods can be 
only applied to a special class of affine nonlinear systems. Thus for inherently nonlinear 
systems, it is recommended to use local linearization of the nonlinear model along the 
calculated trajectory. 
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      Table 2: Performance indices 

Controllers 

V
ar

ia
bl

e 

Criteri
a NLQGPC

(SDC) 
NLQGPC 
(LAT) 

ft  [s] 1.25 1.25 

st  [s] 2 2.5 x 

% U.S. 0.111 0.063 
ft  [s] 0.25 1.25 

st  [s] 1 1.5 z 
% U.S. 30.53 0.056 

rt  [s] 0.5 1 
st  [s] 2.25 1.75 θ  

% O.S. 21.53 0.005 

      Table 1: Performance indices 

Coefficients of  

matrix A 

Coefficients of 

matrix B 

a43 = - g sin(θ) / θ 

a44 = - d / m 

a53 = g (cos(θ) - 1) / 

θ

b41 = cos(θ) / m 

b42 = - sin(θ) / m

b51 = sin(θ) / m 
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Figure 3: Responses of the x-position 

 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 4: Responses of the z-position  Figure 5: The responses of θ  
 
 
 
 
 
 
 
 
 
 
 
  
                Figure 6: Trajectories of 1v   Figure 7: Trajectories of 2v  
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