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ABSTRACT 

This paper discusses the autonomous underwater vehicle (AUV) control performance 
under uncertainty using two different methods, linear quadratic (LQ) servo with command 
following and sliding mode control (SMC). In spite of the uncertainty in our evaluations of 
the hydrodynamic forces, it is fortunate that the use of feedback control is able to compensate 
for this general lack of knowledge and to provide commands to actuators that control and 
stabilize the motion of underwater vehicles. Robustness is obtained by using feedback of key 
motion variables (wind, waves, and current) as measured by sensors to drive actuators which, 
in turn, manipulate the vehicle's motion so that changes in the behavior of the vehicle can be 
automatically compensated. In order to successfully recover or launch a vehicle it will be 
preferred for the vehicle to have the capability to compensate for this motion. This paper 
attempts to investigate a means by which a vehicle may be made to track, in depth, the 
dynamic motion for launch and recover at some significant depth below the surface. Design 
techniques for robust controllers typically use frequency response or state space techniques to 
specify control gains and even include observers and model based compensators to replace 
missing sensors with virtual sensors. While these techniques have definable robustness 
properties, sliding mode control and (LQ) servo with command following - techniques that 
can compensate for known nonlinear behavior - are convenient and has equally definable 
robustness properties. 
   This paper conducts robust control using (LQ) servo with command following and 
sliding mode control (SMC) which have been found useful and convenient in dealing with the 
uncertainty and general nonlinear nature of the models developed previously.  
 
Keywords: Autonomous underwater vehicle, Robust Control, LQ servo command control, 
Sliding Mode Control.   
 
1.  INTRODUCTION  

 
         Conventional controllers design based on linear theory starts with the assumption that 
the 6 DOF underwater vehicle equation of motion can be described as a linear model 
linearized around a point of equilibrium. Stability of an underwater vehicle can be defined as 
the ability of returning an equilibrium state of motion after a disturbance without any 
corrective action, such as use of thruster power or control surfaces. One particular area of 
interest is the capability to deploy and recover AUV’s from a tethered cage at some depth 
below the surface of the water. The challenge arrives upon recovery of the AUV to the cage 
platform.  The cage platform has dynamics associated with it which are induced by wave 
motion effects of the ship to which the cage is tethered.   In order to successfully recover a 
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vehicle into a cage it will be necessary for the vehicle to have the capability to compensate for 
this motion when making its final approach to the cage. 

Previous work in the field of AUV control has shown many different techniques for 
controlling an AUV’s trajectory.  From simple state feedback methods, to optimal methods 
like Linear Quadratic Regulator (LQR), to Lyapanov based methods like Sliding Mode 
Control (SMC), there are many methods which can be successfully utilized, each having 
particular advantages and disadvantages.   Control engineers have studied autopilot 
performance from both classical and ∞H  frequency response [Cassarella, Grimble] and state 
variable time domain modeling frameworks [Healey and Lienard, 1992, Marco, 1992], 
Autopilots that provide high performance (low errors over the dominant range of frequency 
spectrum in both regulation and tracking tasks) in spite of widely varying operating 
conditions are called 'robust' [Grimble]. Design techniques for robust autopilots typically use 
frequency response or state space techniques to specify proportional, derivative and integral 
control gains [Ogata]. A Sliding Mode Control can compensate for known nonlinear behavior 
- is convenient and has equally definable robustness properties [ Utkin, 1977, Slotine, 1986, 
DeCarlo, Zak, Mathews, 1988], [Healey, 1992]. This paper give  (LQ) servo with command 
following and Sliding Mode Control which are beneficial for nonlinear systems (cancels 
nonlinearities), good robustness to uncertainty and practically easy to use. It attempts to show 
a new method in which tracking and recovery onto a moving platform is enabled. Verify the 
controller’s performance by developing models, simulation, and experimental validation. 
   Section II will focus on the equations of motion for an AUV and methods for modeling 
AUV dynamics.  Section III will discuss tracking control using conventional method and a 
proposed sliding control method.  Section IV will present simulation and experimental results.  
 
2. SYSTEM DESCRIPTION 
 
This section develops a simplified models for diving of underwater vehicles having a 'low' 
drag hydrodynamic shape. It will show that for small angles of attack and side slip, linear 
models could be found where the system parameters were uncertain but nominally constant.  
 

2.1 GENERALIZED EQUATIONS OF MOTION 
This section describes the equations of motion for an AUV.  It is from these equations of 

motion that a model can be developed for both simulation of motion as well as construction of 
model based controllers for AUV’s. Using a Newton-Euler approach, and body-fixed 
reference frame as in Figure 1 and notation used in Table 1 Healey [1-4] derives the equations 
of motion for six degrees of freedom as: 
SURGE EQUATION OF MOTION 
m[ ( ) ( ) ( )qprzrpqyrqxqwrvu GGGrrr &&& ++−++−+− 22 ] ( ) fXBW =θ−+ sin                (1) 
SWAY EQUATION OF MOTION 
m[ ( ) ( ) ( )pqrzrpyrpqxpwruv GGGrrr &&& −++−++−+ 22 ] ( ) fYBW =φθ−− sincos          (2) 
HEAVE EQUATION OF MOTION 
m[ ( ) ( ) ( )22 qpzpqryqprxpvquw GGGrrr +−++−++− &&& ] ( ) fZBW =φθ−+ coscos        (3) 
ROLL EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pvquwymrpqIrqIqprIqrIIpI rrGxzyzxyyzx +−++−−−−+−+ &&&& 22              (4)
 ( )] ( ) ( ) fBGBGrrrG KBzWzByWypwruvz =φθ−+φθ−−−+− sincoscoscos&  
PITCH EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pvquwxmrpIrpqIpqrIprIIqI rrGxzyzxyzzy +−−−+−++−−+ &&&& 22              (5) 
( )] ( ) ( ) fBGBGrrrG MBzWzBxWxqwrvuz =θ−+φθ−++−− sincoscos&  
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YAW EQUATION OF MOTION 
( ) ( ) ( ) ( ) ( )[ pwruvxmpqrIqprIqpIpqIIrI rrrGxzyzxyxyz −++−++−−−−+ &&&& 22             (6) 

( )] ( ) ( ) fBGBGrrrG NByWyBxWxqwrvuy =θ−−φθ−−+−− sinsincos&  
Where:   
ur, vr, wr =  velocities for a body fixed system with respect to the water 
p, q, r =  angular velocities for a body fixed system 
W = weight 
B = buoyancy 
I = mass moment of inertia terms 
xB, yB, zB = position difference between geometric center of the AUV and center of buoyancy 
xG, yG, zG = position difference between geometric center of AUV and center of gravity 
Xf, Yf, Zf, KF, Mf, Nf = sums of all external forces and moments acting on an AUV in the 
particular body fixed direction 

Figure 1. Body-fixed and Earth fixed reference frame 
DOF  Force and 

Moments 
Linear and 

angular velocities 
Position and 
Euler angles 

1 Motion in the x-direction  (Surge) X u x 
2 Motion in the y-direction (Sway) Y vr y 
3 Motion in the z-direction (heave) Z wr z 
4 Rotation about the x-axis (Roll, heel) K p φ 
5 Rotation about the y-axis (pitch, trim) M q ө 
6 Rotation about the z-axis (yaw) N r ψ 

Table 1 
 

2.2 Diving Equation of Motion 
A diving system model will be developed from the above equations of motion.  The 

primary variables of interest are wr, q, θ   and z while rv , r, p, ϕ  , ψ  , x, y are neglected. 
Assuming the vehicle is already in forward motion, under constant forward speed relative to 
the water, all products of small motions are ignored and the horizontal plane motions coupled 
to the vertical plane equations can be dropped.  Primarily considering the effects of vehicle 
inertia, hydrostatic and weight terms, and hydrodynamic force components from lift and 
added mass a set of simplified equations of motion are developed To handle the force and 
moment terms, an assumption of “small” motions is made to develop “hydrodynamic 
coefficients” that can be defined relative to the individual motion components [3-4].  This will 
allow the description of the forces and moments as a function of vehicle dynamic states.  
For heave motion, equation (3), the force in the z direction is: 

r rf w r w r q qZ Z w Z w Z q Z q= + + +& && &                                                                     (7) 
and for pitch motion , equation (4) ,  the rotational moment is: 
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rf w r w r q qM M w M w M q M q= + + +& && &                                                               (8) 

This leads to:  
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Where: 
rwZ & = added mass due to heave velocity  

qM &  = added mass due to pitch rate 

rwZ = coefficient of heave force induced by heave velocity 

qZ  = coefficient of heave force induced by pitch rate 

rwM & = added mass moment of inertia due to heave velocity 

qM &  = added mass moment of inertia due to pitch rate 

rwM = coefficient of pitch moment induced by heave velocity  

qM  = coefficient of pitch moment induced by pitch rate 

In addition, the action of the planes will produce forces that when linearized are ( )
plδ tplZ δ  

and ( )
plδ tplM δ .  The dynamics of the vehicle are thus defined as: 

0ru U=            (9) 

0 ( ) cos ( )
r r plr w r w r q q plmw mU q W B Z w Z w Z q Z q Z tδθ δ= + − + + + + +& && & &                     (10) 

( )sin
r ryy B G q q w r w rI q z B z W M q M q M w M wθ= − + + + +& && & &  +Mδδpl                                   (11) 

qθ =&                                            (12) 

0cos sinrZ w Uθ θ= −&                                         (13) 
Further assumptions of bow and stern planes operate equal and opposite, small pitch angle, 
and small motions in the vertical plane [4], therefore Zδ=0, sinθ θ≈ and cos 1θ ≈ , results in a 
set of linerized equations that can be put in the in matrix form, 
MM  x& = AA x + BB u : 
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Equation (14) can be rewritten in the form u= +x Ax B&  where A=MM-1AA  and B=MM-1BB 
and u=δpl  
 
3. Sliding Mode Control 
 
The most highly developed aspect of Sliding Mode Control is with a nonlinear system [5-8]. 
The control law is composed of a nonlinear cancellation term, a linear dynamics substitution 
term, and a switching term for robustness. A similar control law may be found for a system 
model that is predominantly linear where the control again contains a cancellation term, a 
substitution term, and a switching term. The robustness achieved by the switching term also 
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applies. As an application of Lyapunov method, consider a single input system linear in 
control effort. 
                ;)()( uxgxf +=x&                                                                                                    (15) 

Where f(x), g(x) are in general, nonlinear functions in x. We want to design u such that we 
guarantee stability of x =0. 
Choose the Lyapunov function 

        [ ]2)(
2
1)( xxv σ=  , where xsx T=)(σ                                                             (16) 

The scalar function σ(x) can viewed as a weighted sum of the errors in the states x. 
For stability, we want the time derivative of v(x) to be negative, i.e 0)()()( <⎥⎦

⎤
⎢⎣
⎡=

••

xxxv σσ  

Which can achieved if σησσ 2)()( −=
•

xx , which mean that )()( 2 σησ signx −=
•

 

Using xsx T=)(σ , we get ),()()()( 2 σησ signuxgsxfsxsx TTT −−=+==
••

 
Solving for u we get the control law 
                          [ ] )()()()]([ 211 ση signxgsxfsxgsu TTT −− −−=                                             (17) 
We can see that this control law is the sum of two terms. The first term is nonlinear state 
feedback, and the second term is a switching control law. The term η2 is an arbitrary positive 
quantity, we usually select it such that v is negative even in the presence of modeling errors 
and disturbances.  The above control law guarantee stability of σ(x)=0, or σTx=0. We need to 
find (S) such that stability of x=0 is guaranteed. If  σ(x)=0, the system becomes 

)()]([ 1 xfsxgsu TT −−= , and 

                         );()]()[()( 1 xfsxgsxgxf TT −−=x&                                                                (18) 
If we linearize this system, we get,   

  ;BuAxx +=& Where  11 *rr*nn*n*n ;;; ℜ∈ℜ∈ℜ∈ℜ∈ uBAx  and  )0(,
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  Then, on  σ(x)=0 we have ( ) ( )[ ]xSBsBxSBsBx TTTT AAAAx 11 −−
−=−=&                        (20) 

This means that the closed loop dynamics matrix is  
( ) BkASBsBAA TT

C −=−=
− A1 , i.e ( ) ATT SBsk 1−

=   or   0=− BkSS TT A  

     Or ( ) 0=− BkS T A  i.e ( ) 0=− SBk TA  or 0=SAT
c                                                          (21) 

From equation (21), S is the eigenvector of the closed loop dynamic matrix corresponds to 
zero eigenvalue. 
 
4. Simulation Results 
 The simplified dynamics model in equation(14), may be employed and the kinematic 
relationships may be linearized for shallow dive angle where x'=[wr, q, θ, Z] is the state 
vector; and u = δpl(t) is the input. Numerical values for the hydrodynamic coefficient [4, 9 ] 
are given as follows: 
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4.1 Open loop system analysis 
 
The plant has 4 poles (0,-0.0214,-1.3879 and -15.8077) and 2 zeros (-6.1054 and-

12.6951). This means that it contains a natural integrator in addition to sluggish and 
undesirable response. A popular modern approach to the design of robust controllers is linear 
quadratic regulator. This approach has been used extensively in the design.  The optimal 

control law which minimizes the following quadratic cost functions ( )dtuyuJ ∫
∞

+=
0

22  )( ρ  

where ρ is the control weighting parameter.  
With ρ=400, the optimal state feedback gains G=[-0.7250   -1.0930   -0.0371    0.0500] and  
u = -G x,  As expected from LQR theory[8,10], the feedback loop has nice properties when 
examined at the plant input; i.e. when the loop is broken at   the plant input with 
 GLQ=G(SI-A)-1B.   
 

4.2  Simulation Results for LQ Servo with Command Following  
Now suppose that LQ design is rearranged to accommodate reference commands. 

To do this, we wish to replace the following closed loop dynamical system 
[ ]  0 4321 yBgxgggBAxBGxAxBuAx −−=−=+=x&     (22) 

With the following: 
[ ]  y)-r(0 4321 BgxgggBAxBGxAxBuAx −−=−=+=x&      (23) 

Here, represent a reference command that has been introduced in the appropriate place.   The 
error signal e = r-y is the so-called tracking error. 
Finally, the ten meters step response of the closed loop system for the output (z) is shown in 
Figure 2, the response has good time domain specifications with a ten percentage overshoot 
and 18 second settling time but it needs more effort to compensate.    
 

4.3 Simulation Results for Sliding Mode Control 
In development of Sliding Mode Controller, a sliding surface is created from a linear 
combination of the state variable errors, ignoring any nonzero pitch angle and rate 
commands: ( ) '( )comt sσ = −x x          (24) 
Now pole placement is utilized to obtain linear state feedback gains k, with at least one of the 
poles placed at zero.  The closed loop dynamics matrix can then be calculated where 

cA = A - Bk  and the sliding surface polynomial (S) is found from the left eigenvector of 
0s ='

cA . The resulting control law is then obtained from: 
the MATLAB command for pole placement that gives the linear state feedback gain 
k= place(A,B,[-1.2+1.2i,-1.2-1.2i,-1.2,0]) which gives  
k =[-138.6 , -0.2807,  -156.9654 , 0]; as the feedback gain set to place the closed loop poles 
when in the sliding condition at λ=[-1.2+1.2i,  -1.2-1.2i,  -1.2,   0]. One pole is required to be 
at the origin to allow for the single sliding constraint for the single input as mentioned in the 
discussion earlier. The closed loop dynamics matrix is Ac and the eigenvector of A'c for the 
pole at the origin is the sliding surface S = [0.6531 -0.0353 0.7564 0.0050],  
and )()]([ 1 xfsxgsu TT −−= . 
The current depth controller is designed primarily to act as a depth regulator, where once a 
command for depth is received; its job is to approach the commanded depth with desired 
characteristics and stability.  Figure 3 shows the response of AUV depth controller to a ten 
meter change in commanded depth. This response is excellent when the mode of the depth 
controller is acting as regulator, responding to step changes in depth but It can be seen there is 
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a significant phase lag in the depth achieved.   A sliding mode control could be developed and 
tuned to better handle this deficiency. Figure 4 shows error vs. change of error curve for LQ 
and SMC controllers. It prove no chattering or oscillation for both controllers.  
 

4.4  Robustness 
 

As with the many other control laws this method (SMC) relies heavily on the 
knowledge of the model of the signal being tracked as well as a model of the system being 
controlled.   This modeling requirement can be a limitation for the controller depending on the 
ability to accurately model both systems.  This particular design however, is robust in that it 
can handle errors in modeling the dynamics of the input signal that is being tracked.   
As a test of the robustness, add a random noise to states, performance of the controller was 
examined when errors in modeling the reference signal were present. For this case, once the 
gains for the controller were chosen based on an assumed model of the reference signal, the 
controller was able to track a signal of different set of model parameters with little 
degradation in tracking performance as shown in Figure (5). Robustness analysis during 
tracking of exogenous inputs is essentially unchanged from the above analysis because 
robustness is achieved primarily through the feedback of measured response 
  
CONCLUSION 
 

This paper has shown the utilization of a model based, LQ-servo command following, 
and slide mode controllers for an AUV tracking with a time varying depth command. The 
LQ-servo command following Controller has proven to be fairly robust and readily tunable.  
However, there are limitations, in particular its sensitivity to errors in the input signal. In 
addition during implantation, the entire state must be measured. To follow a desired trajectory 
that forms the basis of many guidance requirements, a sliding mode controller (SMC) is 
presented that has been experimentally validated under a wide variety of conditions. The 
SMC is more beneficial for nonlinear systems, good robustness to uncertainty and it is 
practically easy to use. This controller design provides a means by which an AUV could 
efficiently compensate for the time varying depth.  
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Figure 3:  Sliding Mode Controller 
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Figure 5: Sliding Mode Controller with random noise in states 

 

 


