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ABSTRACT 
 

A software simulation has been implemented for Advanced Encryption Algorithm 
AES. Moreover, a chaotic generator has been added to AES to improve its security 
performance via generating a multiple keys instead of using one key. The modified 
AES has been tested for image encryption. The encrypted images have random shape 
and it is absolutely un-identified and has no clue for the original image. 

 
1. Introduction 
 

Cryptography provides solutions to two major problems of data security, the 
privacy problem, preventing an opponent from extracting information from a 
communication channel, and the authentication problem, preventing an opponent 
from injecting false data into the communication channel, or altering messages. On 
January 1997, NIST began the process of choosing a replacement for DES. The 
replacement would be called the Advanced Encryption Standard (AES). A formal call 
for algorithms was made on September 12, 1997. It was required that the AES have a 
block length of 128 bits, and support key lengths of 128, 192, and 256 bits. Twenty-
one cryptosystems have been submitted. 

 
This paper focuses on increasing the performance of the AES algorithm by adding 

the chaotic generator to change the key before using it in the algorithm. AES 
candidates were evaluated for their suitability according to three main factors: 

 • Security. 
• Cost. 
• Algorithm and implementation characteristics. 
 
In the last thirteen years, there has been a great deal of interest in the study of 

nonlinear dynamical systems [7, 8]. The introduction of chaos into communication 
systems offers several opportunities to improve the security performance. This is 
because of the random nature of chaotic systems. Since a chaotic dynamical system is 
deterministic system, it is random like behavior can be very helpful in disguising 
modulations as noise. Moreover, through the sensitivity dependence of chaotic 
systems on their initial conditions, a large number of uncorrelated, random like yet 
deterministic and reproducible signals can be generated. These signals are only 
reproducible on finite arithmetic machines. The quantization doesn’t destroy the 
desirable properties of the sequences, and there would still be a large pool of chaotic 
sequences from which to choose [9]. Mixing the AES encryption algorithm and the 
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chaotic generator is the main concern of this paper and a comparison between the 
results of the standard AES and chaotic added AES in image encryption with the same 
seed Key (128 bit). 

 
 This paper is organized as follows: section 2; deals with AES algorithm, 

section 3, introduces the chaotic generator, section 4, presents the AES simulation 
with results, and section 5 concludes the paper. 

 
2. AES Encryption Algorithm 
 

The Rijndael algorithm [10] is selected by National Institute of Standards and 
Technology (NIST) as a new Advanced Encryption Standards (AES). The Rijndael 
algorithm is based on arithmetic in a finite Galois field, GF(28 ). It has 10, 12, or 14 
rounds (Nr), depending on the key size. In this paper, we consider only operations 
using a 128-bit cipher key and 128-bit data blocks, although the algorithm scales to 
accommodate different key and data block sizes. In this case, the algorithm requires 
10 rounds; each round operates on the state, a 4 x 4 array of bytes called the state 
(table 1). The dimensions of the state depend on the block size. 

  
S0,0 S0,1 S0,2 S0,3
S0,0 S0,1 S0,2 S0,3
S0,0 S0,1 S0,2 S0,3
S0,0 S0,1 S0,2 S0,3

 
Table 1   4x4 Array of Bytes (State) 

 
In addition, each round involves up to four basic transformations: -  
(a) Substitution byte operation;  
(b) Shift rows operation;  
(c) Mix columns operation;  
(d) Add round key operation.  
 
2.1 Substitution Byte (SubByte) Operation  

The operation of SubBytes performs a substitution on each byte of state 
independently, using affine transformation, namely, S-box (table 2), which is a 
permutation of {0, 1 }8 .The bytes are represented in hexadecimal notation as l6x16 
array, where the rows and columns are indexed by hexadecimal digits. In contrast to 
the S-boxes in DES, which are apparently random substitutions, the AES S-box can 
be defined algebraically. The algebraic formulation of the AES S-box includes 
operations in a finite field, defined by: 
 φ : (a7 a6. . .a0) —> ∑  aixi

    ai ε  GF(2), then:  
SUBBYTES (a) = Ø[(x4+x3+x2+x+1 )Ø(a)’+(x6+x5+x+ 1 )mod(x8+ 1)].,  
This operation can be performed using the following steps:  
z = Ø(a) field represented of the byte a. 
z = z-1 the inverse in GF(28 ). 
b = Ø-1(z) map the field element z to the byte b. 
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Output the byte b using the following affine transformation 

 
Table 2 AES S-Box 

 
Where: 
bi= bi ⊕  bi+4mod 8 ⊕ bi+5 mod 8 ⊕  bi+6 mod 8 ⊕  bi+7 mod 8 ⊕  ci and c = (11000110) 

The inverse of the SUBBYTES can be defined by:  
INVSUBBYTES(a) = Ø-1 [((x6+x3+x) Ø(a)+ (x2+1)mod(x8+1))] 
 

2.2 ShiftRows Operation  
The operation of shift row acts on state. Each row of the state is cyclically shifted 

by i bytes to the left, where i is the row number (0, 1, 2, or 3) (table 3). The inverse 
operation INVShiftRows applies right shifts instead of left shifts.  

Table 3 Shift Row Operation 
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2.3 MixColoums Operation 
The operation MixColumns is carried out on each of the four columns of state. 

Each column of the state is replaced by a new column which is formed by multiplying 
that column by a fixed polynomial, c(x) =’03’x3 ⊕ ’01’x2 ⊕ ‘01’x⊕ ’02’, modulo 
x4+1.The multiplication is over GF(28). That is the MixColumns can be described as a 
linear transformation applied to each column of state, multiplying each 4-element 
column vector by a 4x4 matrix with the coefficients in F2 (Fig.1). The MixColoums 
Transformation Equation for encryption is shown below. 

 
Fig.1 MixColumns Operation 

 
2.4 AddRoundKey and the Key Schedule  

In AddRoundKey, each column of state is bitwise XORed with one word of the 
round key. The round key is an extension of the cipher key unique to each round. For 
128- bit Rijndael, there are 10 rounds plus one preliminary application of 
AddRounKey. Therefore, the key schedule must produce 11 round keys, each 
consisting of four 4-byte words, from the 128-bit key. Key expansion produces an 
expanded key consisting of the required 44 words. The key K=(k0,k1,k2,k3), where the 
k1 are 4-byte words, and the expanded key is denoted by the word vector (w0,w1,w2 … 
,w43). The key schedule for the 10-round version of AES, which uses a 128-bit key are 
similar to key schedules for 12, and 14 round versions of AES, but there are minor 
differences in the key-scheduling algorithm.  

 
The key schedule has a much slower diffusion structure than the cipher and 

contains relatively few non-linear elements. It was designed with the requirement that 
knowledge of a part of the cipher key or round key bits shall not allow to compute 
many other round key bits. There is an interesting property is that the key can be split 
into two halves. The two topmost rows interact with the two bottommost rows 
through only 14-byte (in case of 128-bit block size and 256 bit key). The key can be 
splitted by rows or by column (at least for a few cycles).  
 

The Rijndael algorithm proceeds as follows:  
1. Initialize state with the plaintext M: Where M consists of the 16 bytes M0, M1...... 
M15 .  
2. Perform ADDRoundKey, which XOR’s the first RoundKey with state.  
3. For each of the first Nr-1 rounds:  
          • Perform SUBBYTES on state;  
          • Perform SHIFTROWS on state;  
          • Perform MIXCOLUMNS on state;  
          • Perform ADDROUNDKEY.  



Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 RS - 11 - 
 

5

4. For the last round:  
          • Perform SUBBYTES on state;  
          • Perform SJEIIFTROWS on state;  
          • Perform ADDROUNDKEY.  
5. Define the ciphertext to be state.  
 
2.5 Decryption of Rijndael algorithm  
To decrypt, perform the cipher in reverse order, and the reverse key schedule as 
follows:  
1. ADDROUNDKEY with round key Nr.  
2. For the round Nr-1 to 1:  
       • InvShiftRows. 
       • InvSUBBYTEs.  
       • ADDROUNDKEY.  
       • InvMixColumns. 
3. For round l:  
       • InvShiftRows.  
       • InvSUBBYTES.  
       • ADDROUNDKEY using rounds key 1.  
 
2.6 Strengths and weakness of Rijndael algorithm  
2.6.1 Strength of Rijndael  

The algorithm is secure against all known attacks, and the non-linearity resides in 
SubBYTES. SHIFTROWS and MIXCOLUS ensure that after a few rounds, all output 
bits depend on all input bits. In addition, knowledge of part of the cipher key or round 
key does not enable calculation of many others round key bits. Each key bit affects 
many round key bits (Key avalanche effect). The algorithm need very low memory 
requirements, and very fast both in hardware and software. The use of the finite field 
inversion operation in the construction of the S-box yields linear approximation and 
difference distribution tables in which the entries are close to uniform. This provides 
security against differential and linear attacks. Rijndael has a low ROM requirement 
and very low RAM requirement. Both encryption and decryption are at least twice as 
fast as any other finalist. There are apparently no known attacks on AES that are 
faster than exhaustive search. 
 
2.6.2 Weakness  

The decryption is slower than encryption. In addition, the decryption algorithm is 
different from encryption. A drawback is that ROM requirements will increase if both 
encryption and decryption are implemented simultaneously, although it appears to 
remain suitable for these environments. Another drawback is observed if a block of 
data repeated and encrypted with the same key the result will be the same. 

 
3. Chaotic Generators: 

In this paper, we concerned with systems when they are operating in the chaotic 
state to generate random outputs which will be used later in generating multiple 
random keys for the AES algorithm. A discrete time dynamical system is: 

Xk+1 = f ( Xk ) , 0 < Xk < 1 , k= 0,1,2, 3….. 
Where Xk Є Rn is called the state and f maps the state Xk to the next state Xk+1 
starting with initial condition X0. Chaotic maps don’t have to be very complicated, 
widely studied dynamical systems like: 
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1- Logistic map 
2- Cubic map 
3- Tent map 

The experiments were carded out with discrete-time dynamic systems: 
1- Logistic map as a discrete chaos generator [5]: 

                                       Xk+1= r * Xk * (1-Xk)     Where 3.2 < r < 4 
2- Cubic map [6]:    

Xk+1 = r * Xk * (Xk
2  -1) + Xk .  Where 3.2 < r < 4 

Where 3.2≤ r ≤ 4, and r is called the bifurcation parameter. Depending on the value of 
r, the dynamics of this system can change dramatically, exhibiting periodicity or 
chaos. For 3.75…≤ r ≤ 4 the sequences are, for all practical purposes, non-periodic 
and non-converging. The initial condition was set to be (X0 = 0.1), Then we but a 
threshold to generate the sequence of ones and zeros. 

 3- Tent map [3]:  

⎢
⎣

⎡
≤+
≥−

=+ 0,*8.15.0
0,*25.0

1
kk

kk
k XX

XX
X  

The initial condition was set to be (X0 = 0.1).Then we but a threshold to generate 
the sequence of ones and zeros. Chaotic system has a very sensitive dependence on 
their initial conditions. This sensitivity dependence can be demonstrated by giving 
two very close initial points to the iterative map. After little iteration, the two resulting 
sequences will look completely uncorrelated hence, any slight deference in the 
component of the circuit (analog one) will cause transmitter receiver mismatching [4]. 
 
4. AES standard encryption algorithm software 
 

The software is designed to simulate the AES encryption and decryption 
algorithms on images (displaying and storing) as the probability of redundancy (more 
than one pixel with the same value) is higher than ordinary files and the performance 
can be clearly measured visually. The drawbacks of AES encryption algorithm in 
encrypting a large number of blocks (plain data) with the same value lead to the same 
results because of the constantly of the data and the seed key so we use a Chaotic 
algorithm to generate new seed key for each block of data.  

 
To present the difference between the AES algorithm on image encryption and the 

chaotic added AES we implement software as a simulator to the AES in encryption 
and decryption operations and the following results is generated through it. The 
interface of this software is shown in Fig.2, the software can be used in both 
encryption and decryption processes. It also can be used in the simulation of the 
standard AES and the AES with the chaotic generator. The main problem appears 
when encrypting an image with many redundant pixels for example if the image 
shown in table 4 is encrypted with the AES algorithm then due to the constant seed 
key then the encrypted image will be the one in table 4 and it is clear that the same 
block of data will lead to the same encrypted block so the cryptanalyst can estimate 
that this area has the same stream.  
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Fig.2 Software Interface 
 
The block diagrams in Fig.3 shows the architecture of the AES simulation software. 

 
Fig.3 Architecture of Chaotic Added AES Software 

 
In the Chaotic Generator Block the proposed chaotic system is Logistic map 

                                       Xk+1= r * Xk * (1-Xk)     Where 3.2 < r < 4 
 
4.1 Results 

In this section, we will introduce the results of the AES algorithm for encryption 
of an image, the basic problem was when encrypting an image with many pixels with 
the same color by the same seed key the encrypted image contains an area with partial 
known part as shown in the images tables (4, 5). It is clear the difference in the 
performance in encrypting the image with AES algorithm and the chaotic added AES 
from tables (4, 5).  
 

Chaotic 
Generator 

x (0-1) 
r (3.2- 4) 

128 Bit Key AES Key Generator 

Expanded Keys 

AES Encryption and 
Decryption Algorithm 

128 Bit plain data 128 Bit 
cipher data 
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Original image  Encrypted image  
With AES algorithm 

  
 

 
   

Encrypted with chaotic 
generator added to AES 

 
 

Table 4 AES Results on colored image 
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Original image  Encrypted image  
With AES algorithm 

 
 

 

Original image Encrypted image  
With  chaotic generator added to the AES 

  
 

Table 5 AES Results on a Grey Map Image  
 
 
5. Conclusion 
 
This paper deals with improving the security performance of AES algorithm 
especially for image encryption. This goal can be achieved by adding a chaotic 
generator to generate multiple 128 bit key. The software simulation has been tested 
for image encryption and it is clear that the pixels of encrypted images have been 
distributed in a random manner, despite of the use of AES only. 
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