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ABSTRACT 
 
In this paper we apply the smoothing particle filter to track a highly maneuverable target in a 
multiple-sensors network. We address the scenario of a single highly-maneuverable target 
moving through a field of stationary sensors with known locations. The target is tracked 
through the sensors filed using either all sensors or active sensors within a gate around the 
target. Results have been compared to tracking the same target using conventional particle 
filter. Smoothing particle filter showed improvement in the performance. 

 

1. INTRODUCTION 
 
A common application of sequential state estimation is the tracking of targets moving through 
a sensors’ filed of view. However, state evolution is often not easily modeled in a predictive 
fashion. This can happen either when the system being studied is not well understood, or 
when the random changes in the state are large enough to dominate the predictable changes. 
The second case is that of a highly maneuverable target [1]. In practical target tracking 
environment, with the presence of uncertain target models and incomplete observations, 
nonlinear models in state equation and measurement relations as well as non-Gaussian noise 
assumptions are more suitable for high performance requirements and some realistic 
applications. Traditionally, these nonlinear problems are solved using linearizing tracking 
filters, mainly extended Kalman filters (EKF) [2]  but the linearized method is not efficient 
enough in practice. Several methods for nonlinear non-Gaussian state space model are 
proposed as in [3], [4], and [5]. They are called “Particle Filters” because of their 
approximation of non-Gaussian distribution of the state by many numbers of particles in state 
space. The main advantage of the particle filters is to be able to handle any functional 
nonlinearity and system of measurement noise of any distribution. But the highly uncertainty 
and incompleteness of the information in maneuvering target-tracking problem will weaken 
this advantage. To overcome this weakness, the smoothing particle filter is used [6]. 
 
*Ph.D. Candidate, Elec. & Comp. Eng. Department, University of Calgary, AB, Canada. 
**Associate Professor, Elec. & Comp. Eng. Department, University of Calgary, AB, Canada.



Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 

ICEENG Form -6 
 

In this paper, we are going to address the same scenario mentioned in [7]: a single target 
moving through a field of arbitrary located sensors. Each sensor can be configured to be 
active or inactive at each time period. At each scan time, each active sensor outputs a binary 
observation indicating that the target has or has not been detected. The target trajectory is 
estimated from the time sequence of target detections by the various sensors. 
This paper is organized as follows. We first describe the particle filter equations and 
algorithm as well as the main idea of the smoothing particle filter. Then, target and sensor 
models are given. Performance analysis is discussed in section 4. Finally, we state our 
conclusion. 

 
 
2. THE BASIC PARTICLE FILTER AND SMOOTHING PARTICLE 
FILTER 
 
We consider a dynamic system represented by the stochastic process (Xt)∈ xnR  whose 
temporal evolution is given by the state equation: 
 

( )tttt V,XFX 1−=       (1) 
 
The measurement equation is given by: 
 

( )tttt W,XHY =       (2) 
 
The two processes (Vt)∈ vnR  and (Wt)∈ wnR  are white noises. Moreover, it is to be noted that 
no linearity hypothesis on Ft and Ht is done. We will denote by Y0:t the sequence of the 
random variables (Y0, … , Yt) and by ty :0 one realization of this sequence. The main problem 
consists in computing at each time t the conditional density Lt of the state Xt given all the 
observations accumulated up to t, i.e., ( )tttt yYyYXpL === ,...,| 00  and also in estimating any 
functional of the state g(Xt) by the expectation ( )[ ]tt YXgE :0| . The Recursive Bayesian filter 
resolves exactly this problem in two steps at each time t: prediction step and correction step. 
Suppose we know Lt-1. The prediction step is done according to the following equation: 
 

( ) ( )∫ ===== −−−−
xnR

ttttt:t:tt dx)x(LxX|xXpyY|xXp 111010    (3) 

 
Using (1), we can calculate ( )xX|xXp ttt == −1 : 
 

( ) ( ) ( )∫ ======= −−−
vnR

ttttttttt dvxX|vVpvV,xX|xXpxX|xXp 111   (4) 

( )( ) ( )∫ =−=
vnR

ttt dvvVpv,xFxδ              (5) 

 
where δ(x) denotes the Dirac distribution. Then, in the correction step, the Baye’s rule enables 
us to compute Lt: 
 

( ) ( ) ( )
( )1010

1010

−−

−−

==
====

=
t:t:tt

t:t:tttttt
tt yY|yYp

yY|xXpxX|yYp
xL    (6) 
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Applying (2), we can rewrite ( )tttt xXyYp == |  as: 
 

( ) ( )( ) ( )∫ =−=== wnR tttttttt dwwWpw,xHYxX|yYp δ    (7) 
 
As well, the denominator in (6) could be expressed as follows: 
 

( ) ( ) ( )∫ ======= −−−− xnR t:t:ttttt:t:tt dxyY|xXpxX|yYpyY|yYp 10101010  (8) 
 

The particle filter, named also Sampling Importance Resampling (SIR) as mentioned 
previously, proposes to approximate the densities (Lt)t by a finite weighted sum of N-Dirac 
densities centered on elements of xnR , named “Particles”. The application of the particle 
filter requires that one knows how: 
• to sample from initial prior marginal p(X0), 
• to sample from p(Vt) for all t, and 
• to compute ( )tttt xX|yYp ==  for all t through known function lt such that 

lt(y;x)∝ ( )tttt xX|yYp ==  where missing normalization should not depend on x. 
The first particle set S0 is created by drawing N independent realizations from p(X0) and 
assigning uniform weight 1/N to each of them. Then, suppose we dispose at time t-1 of the 

particle set ( ) N,...,n
n
t

n
tt q,sS 1111 =−−− =  where 1

1
1 =∑

=
−

N

n

n
tq . Posteriori marginal Lt-1 is then 

estimated by the probability density ∑=
=

−
−−

N

n s
n
tS n

tt
qL

1
1

11
δ . Then, the weight of each particle is 

updated during the correction step. Up to a constant, equation (6) comes down to adjust the 
weight of predictions by multiplying it by the likelihood p(yt|xt). 
In practice, the particle set is finite and the major drawback of this algorithm is the 
degeneracy of the particle set: only few particles keep high weights and the others have very 
small ones. The resampling is a good way to remedy this drawback because it cancels the 
particles of smallest weight. To measure the degeneracy of the algorithm, the effective sample 
size Neff has been introduced in [9] and [10] in more general context in “importance 
resampling”. We can estimate this quantity by: 
 

( )∑=
=

N

n

n
teff qN̂

1

2
1      (9) 

 
which measures the number of meaningful particles. The resampling is then done only 
if thresholdeff NN̂ < . It enables the particle set to better learn the process and to keep its 
memory during the interval where no resampling occurs. More details can be found in [9], 
[10], and [11] and we summarize the whole particle filter in Algorithm 1. 
However, due to the highly uncertainty and incompleteness of the information in 
maneuvering target-tracking problem will weaken this advantage. To overcome this 
weakness, the smoothing particle filter was used [6]. The smoothing particle filter is applied 
for maneuvering target-tracking problems. Its algorithm combines the particle filter; which 
tackles the nonlinear non-Gaussian peculiarities, and smoothing of the PDF of system modes; 
which settles the maneuverability of the target. The algorithm is shown in Algorithm 2. 
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3. TARGET AND SENSOR MODELS 
 
3.1. Target Model 
The target is constrained to 2D motion. The target state is composed of the target’s position 
and velocity at time tk. A discrete-time linear system driven by white Gaussian noise, to 
model the target dynamics, is used. The target state vector is given by: 
 

[ ]kkkkk yxyxX &&=      (10) 
 

where xk and yk represent the target’s position at time k; as well kx& and ky& represent the target’s 
velocity. 
Consider the scan rate is T. The maneuvering target system dynamics are given by: 
 

Xk+1 = F Xk + Wk     (11) 
 
where Wk is a vector Gaussian white noise process The transition matrix F is defined as 
follows: 
 
(1) Constant velocity model: 
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(2) Coordinated turn model: 
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whereθ&denotes the turn rate in radians/second [12]. 
 
3.2. Sensor Model 
We’ve applied the same sensor model as mentioned in [7]. In our scenario, N sensors are 
located at known locations in the target plane. At each time k, each sensor configured to be 
active or inactive. The received signal at each sensor is the sum of noise and the signal 
emitted (or reflected) by the target (if present). The sensor activation depends on an adaptive 
algorithm in which only sensors within a given distance from the target are activated. The 
detailed algorithm is mentioned in [7]. 
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4. PERFORMANCE ANALYSIS 
 
We’ve applied the smoothing particle filter to track a highly-maneuverable target which 
makes a Z-shape trajectory. The target was tracked during 50 scan periods. The initial target 
speed was chosen to be 265 m/s and the turn rate π/4. The performance of the simulation was 
evaluated using two sets of 200 Monte Carlo runs. In the first set, we tracked the target using 
conventional particle filter. Then, we tracked the same target using the smoothing particle 
filter. Fig. 1 shows the performance of both particle filter and smoothing particle filter 
tracking the x-axis position of a highly-maneuverable target in a multiple-sensors network; 
meanwhile Fig. 2 shows their performances in tracking the target’s velocity. In Fig. 3, we 
show the performance of both filters in tracking the trajectory of the target flying in a field of 
stationary sensors with known location distributed randomly. In the three figures, we can 
notice that the particle filter fails to track the maneuverable target when the maneuver starts. 
On the other hand, we can notice that the smoothing particle filter can track the same target 
successfully. 
 
 

  
(a) (b) 

 
Fig. 1 True and estimated target position in x-axis using (a) particle filter and (b) 

smoothing particle filter with both all and minimized sensors 
 

 

  
(a) (b) 
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Fig. 2 True and estimated target velocity in x-axis using (a) particle filter and (b) 
smoothing particle filter with both all and minimized sensors 

 

  
(a) (b) 

 
Fig. 3 True and estimated target trajectory using (a) particle filter and (b) smoothing 

particle filter with both all and minimized sensors 
 

 
5- Conclusion 
The simulation runs showed the failure of the particle filter tracking a highly-maneuverable 
target at the turn point; meanwhile, the smoothing particle filter tracked the highly-
maneuverable target successfully in multiple-sensors network with both all and minimized 
sensors. 
 
 
APPENDICES 
 
Algorithm 1 Basic particle filter with adaptive resampling 
for n=1,…,N do 
    Generate a random sample n

tv  from p(Vt). 

    Compute ( )n
t

n
tt

n
tt vsFs ,11| −− =  

end for 
Correction 
for n=1,…,N do 

    Compute 
( )
( )∑

=
−−

−−= N

n

n
t

n
tttt

n
t

n
ttttn

t

qsyl

qsyl
q

1
11|

11|

;

;
 

end for 
Estimation 

Estimate E{xt} by { } ( )∑
=

−=
N

n

n
tt

n
tt sgqxE

1
1|

ˆ  

Effective size estimation 

Calculate ( )∑
=

=
N

n

n
teff qN

1

21ˆ  

Resampling 
if thresholdeff NN <ˆ  then 
    for n=1,…,N do 



Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 

ICEENG Form -6 
 

        Draw n
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        Set Nq n
t /1=  

    end for 
else 
    for n=1,…,N do 
        n

tt
n
t ss 1| −=  

    end for 
end if 
 
 
Algorithm 2    Smoothing particle filter 
for i=1,…, N do 
    simulate a sample jx1  from p(x1) with equal weights.  
    set initial mode probabilities ( ) ( )j

i mpYmp =11 | , j=1,…,N. 
end for 
for i=1,…, N do 

compute ( )t
i
t

i
t

i
t wmxFx ,,1 =+  where i

tm  is a sample drawn from the system mode set M with distribution 
( ){ } Njt

i
t Ymp ,...,1| =  and wt is a sample drawn from the white noise PDF. 

compute { }i
t

i
t xEx 11 ++ =  and i

tmN  

Compute the posterior smoothed mode probabilities ( ) ( )∑
=

++++ =
i
tm

jj

N

j

k
t

k
ttt

i
t xyp

c
Ymp

1
1111 |1| π , where c is the 

normalizing factor. Using the posterior mode probabilities, predict the particles again as in second step. 

Calculate the likelihood weights and normalize ( )i
tt

i
t xyp

c 111 |
'

1
+++ =π , where c’ is used to normalize the 

weights sum to 1. 

Calculate probabilities of the system mode at time step t+1: ( ) ( ) ( )∑
=

++++ ∝
tN

j
t

j
t

i
t

i
tt

i
t YmpmmpYmp

1
1111 ||| , i = 

1,…,N. 
Perform resampling and roughening procedure of the set ( ) Ni

i
t

i
tx ,...,111 , =++ π  to overcome the poorness of the 

particle filter. 
end for 
Increase t and iterate to second step. 
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