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ABSTRACT 
 
In multiple target tracking (MTT) systems that track targets with less-than-unity probability 
of detection in the presence of false alarms (FA), data association is very important. Data 
association is responsible for deciding which of the received multiple measurements should 
update which track. Some data association techniques use a unique pairing to update a track; 
i.e. at most one observation is used to update a track. An alternative approach is to use all of 
the validated measurements with different weights (probabilities), known as probabilistic data 
association (PDA). Due to the increase in the FA rate or low probability of target detection, 
most of the data association algorithms begin to fail. In this paper, we introduce a new 
suboptimal PDA technique for MTT in dense clutter environment. The proposed technique is 
based on merging the probabilistic nearest-neighbor filter (PNNF) with the PDA algorithm. 
The main idea is based on high-weighting the measurements that has minimum statistical 
distance from the predicted position of the target. The state updating equation in Kalman filter 
uses the combined innovation as in Joint Probabilistic Data Association method which is 
defined as the weighted sum of the residuals associated with many observations. Due to its 
simplicity in calculations and robustness, this technique can be used for real-time applications 
even though in dense clutter environments. We applied the proposed algorithm in tracking 
multiple targets in presence of various clutter densities. Results showed better performance 
when compared to Nearest-Neighbor and All-Neighbors approaches in different clutter 
densities and noise measurements. 
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1. INTRODUCTION 
 
In surveillance systems, target tracking is an essential requirement. Measurements from 
diverse sources (targets of interest, clutter, and/or internal thermal noise) are reported by 
sensors; e.g., radar, sonar, and infrared (IR) sensors. The main objective of a tracking system 
is to collect sensor data and classify them into sets of observations, or tracks that are produced 
by the same object (or target). In general, observations can be received at regular intervals of 
time (scan periods). Data association is the subject that deals with the integration of 
measurements (observations) from one or more sensors in multitarget tracking (MTT) 
systems. Each measurement may originate from one out-of-several target or from false 
detection (clutter and/or noise). In addition, a target may fail to be detected in some scans. 
The uncertainty in measurement origin is a complicated factor, in addition to the statistical in 
the values of measurements. In order to estimate the states of the targets, one needs to resolve 
this uncertainty, i.e. to associate with each measurement a unique target or to declare the 
measurement as clutter. If an incorrect observation is associated with a track, this track may 
diverge and causes other tracks to also diverge. Thus, data association is considered the 
crucial element and the most important component of any MTT system. 
A number of algorithms have been developed to solve this problem [1,2], e.g., the strongest-
neighbor filter (SNF) and the nearest-neighbor filter (NNF). In the SNF, we use the signal 
with the highest intensity among the received measurements within a gate for track update 
and the others are discarded. Meanwhile, in the NNF, the measurement with the minimum 
statistical distance to the predicted measurement is used. Unfortunately, these approaches 
begin to fail as the FA rate increases or with low observable (low probability of target 
detection) targets [3,4]. An alternative approach – known as probabilistic data association 
(PDA) [5] – uses all of the validated measurements with different weights (probabilities). The 
standard PDA and its extensions have been shown to be very effective in tracking a single 
target in clutter [4,6]. 
In case of tracking multiple targets, data association becomes more difficult because one 
measurement can be validated by multiple tracks in addition to a track validating multiple 
measurements as in the single-target case. To solve this problem, joint PDA (JPDA) 
algorithm is used to track multiple targets by evaluating the measurement-to-track association 
probabilities and combining them to find the state estimate [4]. A more powerful algorithm is 
the multiple hypothesis tracking (MHT). It handles the multitarget tracking problem by 
evaluating the likelihood that there is a target given a sequence of measurements. Although 
the MHT can be considered as an attempt to obtain an optima solution, its practical use in 
large scale problems is limited since it requires the evaluation of an exponentially increasing 
number of feasible joint association hypotheses [2]. In the tracking benchmark problem [7] 
designed to compare the performance of different algorithms for tracking highly maneuvering 
targets in the presence of electronic countermeasures, the PDA-based estimator, in 
conjunction with the interacting multiple model (IMM) estimator, yielded better performance 
compared to that of the MHT algorithm [7]. 
In this paper, we propose a new extension for the PDA capable for tracking multiple targets in 
dense clutter environment. The proposed technique is based on merging the nearest-neighbor 
filter (NNF) together with the PDA algorithm. The main idea is based on high-weighting the 
measurements that has minimum statistical distance from the predicted position of the target. 
The state updating equation in Kalman filter uses the combined innovation as in Joint 
Probabilistic Data Association method which is defined as the weighted sum of the residuals 
associated with many observations. The merged PDA (MPDA) algorithm is considered to be 
a simpler approach for MTT purposes in dense clutter environment. 
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This paper is organized as follows. Section 2 presents an overview on the nearest-neighbor 
filter NNF and the Porbabilistic NNF (PNNF). In Section 3, a brief introduction to the basic 
PDA is given. The MPDA algorithm is defined in Section 4. Finally, performance analysis 
and simulation results are shown in Section 5 followed by a conclusion. 
 
 
2. NEAREST-NEIGHBOR APPROACH 
 
For its computational simplicity, the nearest-neighbor filter (NNF) is widely used for tracking 
a single target in a clutter environment. In the update step, together with the Kalman filter, the 
NNF uses the measurement with the least statistical distance from the predicted position as if 
it were target-originated. The main drawback of the NNF is the false alarms. To improve the 
performance of the NNF, the probabilistic NNF (PNNF) is introduced [9]. Three events are 
taken into account for the derivation of the estimation error covariance of the target in the 
PNNF: (1) the measurement is originated from the true target (MT), (2) the measurement is 
originated from a false target (MF); e.g. clutter, (3) there is no validated measurement at all 
(M0). The PNNF puts into consideration the probability of the event that the selected 
measurement is originated from the true target. 
 
2.1 Nearest-Neighbor Filter (NNF) Algorithm 
The NNF algorithm is driven in two steps: (1) prediction step identical to that used in Kalman 
filter and (2) update step as follows [8]: 
 (a) For the case of M0 
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where 
PD ... probability of detection, 
PG ... probability of the target within the validation gate, and 

g
Cτ ... constant covariance ratio. 
PG and 

g
Cτ are defined by the following equations: 
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where γ is the gate size, ( ) ( ) n

/n nc//n 222 πΓ = , and c2 = π for n = 2 in a 2-dimensional 
space. The target of interest is assumed to be detectable. 
 
2.2 Probabilistic Nearest-Neighbor Filter (PNNF) Algorithm 
The PNNF was introduced in [9] to overcome the drawback of the NNF. It takes into account 
the probabilities of the possible events engendered by the data association with the nearest-
neighbor measurement {MT, MF, M0}. In this paper, we are going to use the PNNF as derived 
by Lee and Song in [8] under the assumption that the target is visible. The PNNF is 
summarized in two identical steps to that of the NNF algorithm: 
 (a) For the case of M0 
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 (b) For the case of 0M  
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where FM

kP is the update error covariance conditioned on MF, vk is the residual of the NN 
measurement, and α and β1 are given by: 
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where n=2 for 2-dimensional space, D is the normalized distance squared (NDS) of the NN 
measurement, λ is the spatial clutter density, β0 is the probability that the NN measurement is 
not target originated (β0=1-β1), and PR(D) is the probability of the target within an elliptic 
gate with gate size D and Cτ(D) are given by the following equations: 
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3- THE PROBABILISTIC DATA ASSOCIATION (PDA) ALGORITHM 

The Probabilistic Data Association (PDA) [10] is considered as the first technique introduced 
based on the all-neighbors (AN) approach. However, data association becomes more difficult 
with multiple targets. Here, a measurement itself can be validated by multiple tracks. Thus a 
modified technique denoted Joint PDA (JPDA) [11] was derived to include the presence of 
other observations coming from other targets by evaluating the measurement-to-track 
association probabilities and combining them to find the state estimate. To overcome the 
computational complexity of the JPDA, several algorithms was generated, e.g., Ad hoc JPDA 
[12], suboptimal JPDA [13], near-optimal JPDA [14], integrated PDA [15], and dominant 
PDA [16].  
In the tracking benchmark problem designed to compare the performance of different 
algorithms for tracking highly-maneuverable targets in the presence of electronic 
countermeasures, the PDA-based estimator, in conjunction with Interacting Multiple Models 
(IMM), showed better performance when compared to that of the Multiple Hypothesis 
Tracking (MHT), which handles the MTT problem by evaluating the likelihood that there is a 
target giving a sequence of measurements [2]. However, the IMMPDA combines two PDA 
algorithms and has a larger window than PDA. Therefore, it results in more computational 
complexity than PDA. Meanwhile, comparing PDA to other data association techniques, e.g., 
Viterbi Data Association (VDA) and Fuzzy Data Association (FDA) techniques, showed the 
failure of PDA to track targets in low Signal-to-Noise Ratio (SNR) [17]. On the other hand, 
PDA has many other applications in many tracking scenarios, e.g., tracking low observable 
targets in passive sonar measurements and tracking the state of maneuvering target using 
measurement from an electrooptical sensor. 
 
3.1 Assumptions 
The PDA algorithm calculates in real-time the probability that each validated measurement is 
assignable to the target of interest. Assuming that there is a unique target of interest whose 
state evolves according to a dynamic equation driven by process noise, the state of the target 
of interest, of dimension nx, is assumed to evolve in time according to: 
 

kkkkk WGXFX +=+1       (8) 
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where Xk is n-dimensional state vector at kth stage, Fk is n×n transition matrix, Gk is n×1 
transition matrix, and Wk is n-dimensional zero-mean white Gaussian  noise with know 
covariance matrix Qk. The measurement model, of dimension mz, is described as follows: 
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where Zk is m-dimensional measurement vector, Hk is m×n observation matrix, and Vk is m-
dimensional measurement zero-mean white Gaussian noise mutually independent with Wk 
with known covariance matrix Rk. As the measurements are in polar coordinates and tracking 
algorithm is done in Cartesian coordinates, the measurements are coupled. The covariance 
matrix of the measurement noise Vk may be written as: 
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which is given by: 
 

TARAkR 202)( =       (11) 
 

where: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=

2

2

22

2

0

2

0
0

0
0

)cos()sin(
)sin()cos(

y

xr

r
R

A

σ
σ

σ
σ

θθ
θθ

θ

    (12) 

 
where A2 is the rotational matrix, 2

rσ and 2
θσ  are the range and azimuth measurement 

noise respectively. We clarified this part in equation The number of clutter observations 
C(k) are assumed to have Normal distribution and their locations are assumed to have the 
uniform distribution on the surveillance region [1,2]. The past information about the target is 
approximated to be: 
 

[ ] [ ]kkk
k

k PxxNZxp ˆ,ˆ;| 1 =−      (13) 
 

where [ ]1,; kkk PxxN denotes the normal probability density function (pdf) with argument xk, 

kx mean and kP covariance matrix. At each time, a validation region is set up as in (16). At 
most one of several validated measurements can be target-originated if the target was detected 
and the corresponding measurement fell into the validation gate. The remaining 
measurements are assumed to be FAs or clutter and are modeled as independent identically 
distributed (i.i.d.) measurements with uniform spatial distribution. The target detections occur 
independently over time with known probability PD. These assumptions enable a state 
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estimation scheme to be obtained, which is almost as simple as the Kalman filter (KF), but 
much more effective in clutter. 
 
3.2 Probabilistic Data Association Filter (PDAF) 
The PDAF uses a decomposition of the estimation with respect to the origin of each element 
of the latest set of validated measurements, denoted as: 
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kz 1= is the ith validated measurement and mk is the number of measurements in the 

validation region at time k. The cumulative set (sequence) of measurements is: 
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3.3 Measurement Validation 
From the Gaussian assumption driven in (13), the validation region is the elliptical region 
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where γ  is the gate size and Sk is covariance of innovation corresponding to the true 
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where π== 2cc
zm as we are evaluating a 2-dimensional space. 

 
3.4 State Estimation 
According to the assumptions, the association events 
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Are mutually exclusive for mk ≥ 1. The estimate conditioned on measurement i being correct 
is 

kkikkki mivWxx ,...,1ˆ ,, =+=     (19) 
 where the corresponding innovation is 

kkiki zzv ˆ,, −=       (20) 
and the gain Wk is the identical to that in Kalman filter 
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In case of clutter or no measurement are within the gate area, the track will be updated using 
the predicted position, i.e., 

kk xx ˆ,0 =       (22) 
 

3.5 State and Covariance Update 
Combining (19) and (22), we get the state update equation in the PDAF: 
 

kkkk vWxx += ˆ      (23) 
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where the combined innovation is: 
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3.6 Prediction Equations 
The prediction of the state and measurement to scan period k+1 as done as in the standard 
Kalman filter: 
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The covariance of the predicted state is driven similarly: 
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Our main objective in this paper is to prove the ability of the PDA – when merged with PNNF 
algorithm - to track multiple targets even though in dense clutter environment, e.g. low SNR. 
 
 
4. MERGED PROBABILISTIC DATA ASSOCIATION (MPDA) 
 
In this section, we introduce a new suboptimal PDA algorithm. The main idea lies on merging 
both PNNF together with the PDA algorithm. It is mainly based on the weighted sum of all 
observations within the validation gate by giving a probability weight to each observation. 
This probability weight depends on measuring the statistical distance from the predicted 
target position and each observation within its validation gate as defined in the PNNF 
approach in (7). 
Assume at a scan period k, we have a predicted position of the target of interest 1ˆ +kx given by: 
 

11ˆ −−= kkk xFx       (27) 
 

which lies within an elliptical area validation gate with size γ given by (17): 
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where k

T
kkkk RHPHS += and π== 2cc

zm for 2-dimensional domain. Consider the situation 
that there exist N observations within the validation gate of the track i. These received 
observations may not all arise from the target of interest; some of them may be extraneous 
returns like clutter, noise, or false alarms. Consequently, we take into account the 
probabilities of the possible events engendered by the data association with the NN 
measurement {MT, MF, M0}. Applying the PNNF together with the PDA algorithm, the update 
step will be as follows: 
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 (a) For the case of M0 
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 (b) For the case of 0M  
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with residual covariance matrix defined by: 
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The probability of track j being associated with observation i within the validation gate is 
defined by: 
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Where D is the statistical distance measured between the jth observation and track i which is 
given by: 
 

( ) ( )22 ˆˆ jiji yyxxD −+−=      (33) 
 

The formula mentioned in (32) to calculate PG gives a high weighting to the measurement that 
has a minimum statistical distance from the predicted position of the target. Furthermore, this 
weight decreases as a measurement position far from the predicted position of the target. 
Moreover, this weight is evaluated on a probabilistic basis according to which event we have. 
After computing the probabilities using equation (32), the state updating equation in Kalman 
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filter uses the combined innovation as in PDA method which is defined as the weighted sum 

of the residuals associated with m observations mentioned in (24) as ∑=
=

km

i
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5. PERFORMANCE ANALYSIS 
 
The number of clutter observations is assumed to be Gaussian distributed. The noise is 
stochastic independent on the target trajectories. Fig. 1 shows an example of clutter 
observations surrounding target plots. The location of clutter observations is assumed to have 
a uniform distribution around the predicted target position. 
 

 
Fig. 1 Example on clutter surrounding targets with b=0.03 

 
The target motion is modeled in two dimensions x-y coordinates. The time invariant F and G 
matrices are given by : 
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The state matrix H is defined by : 
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The measurement noise Vk is defined as zero-mean white Gaussian noise and covariance 
matrix R : 
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where σx and σy are the standard deviations of the measurement noise in both x and y 
directions, respectively. 
Fig. 2 shows the error performance in tracking a single target using NNF with minimum 
distance, NNF with normalized distance, JPDA, and our proposed algorithm. It is clear that 
our proposed algorithm has better convergence to the steady-state error as well as the least 
mean-square-error value. 
 

 
Fig. 2 The ensemble error performance in tracking a single target 

 
Figure 3 represents the error in position between the true and estimated trajectories. We can 
notice that the maximum error does not exceed 450 m in the early scan periods. Then, the 
error converges to its minimum value and reaches the minimum value by the 20th scan period 
aproximately. 
 

 
Fig. 3 Error in position between true and estimated trajectories. 

 
To show the performance of the MPDA, we addrress the problem of tracking the scenario of 
two small-angle crossing targets. Fig. 4 shows the first scenario. For comparison purpose, we 
tracked the same scenario using (a) JPDA algorithm and (b) the proposed MPDA algorithm. 
As shown, the JPDA failed to track two small-angle crossing targets and one track is lost. 
Meanwhile, the proposed technique is quite successful in tracking both targets. The high 
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convergence speed as well as the steady-state error of the proposed algorithm is shown in 
Figure 5 for both tracks. 
 
 

  
(a) (b) 

 
Fig. 4 True and predicted trajectories for two small-angle crossing targets immersed in dense 

clutter (b=0.03) using (a) JPDA and (b) MPDA techniques 
 

 
Fig. 5 RMSE between the estimated and true trajectories for small-angle crossing tracks using 

MPDA 
 
 
6. CONCLUSION 
 
In this paper, we introduced a new merged probabilistic data association (MPDA) technique 
to track multiple targets in various tracking situations. The MPDA was compared to other 
data association techniques. The results showed that the MPDA is more efficient than NN-
ND, NN-MD, and PDA approaches in tracking difficult situations, e.g. low-angle crossing 
tracks and close parallel tracks in dense clutter environment and high noise measurements. 
Also, the MPDA has a relative high convergence speed. The main advantage of the MPDA 
over the IMMPDA, VDA, and FDA techniques is the simplicity. Due to the simplicity 
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together with the high convergence speed, the MPDA is quite efficient for real-time 
applications. 
 
REFERENCES 
 
[1] Bar-Shalom, Y., Ed., Multitarget-Multisensor Tracking: Applications and Advances. 

Norwood, MA: Artech House, 1990, vol. I. Reprinted: Storrs, CT: YBS, 1998. 
[2] Blackman, S. and Popoli, R., Design and Analysis of Modern Tracking Systems. 

Norwood, MA: Artech House, 1999. 
[3] Dezert, J., “Improvement of strapdown inertial navigation using PDAF,” IEEE Trans. 

Aerospace and Electronic Systems, vol. 35, pp. 835–856, July 1999. 
[4] Kirubarajan, T., Bar-Shalom, Y., Blair, W. D., and Watson, G. A., “IMMPDA solution to 

benchmark for radar resource allocation and tracking in the presence of ECM,” IEEE 
Transactions on Aerospace and Electronic Systems., vol. 34, pp. 1023–1036, Oct. 1998. 

[5] Bar-Shalom, Y. and Li, X. R., Multitarget-Multisensor Tracking: Principles and 
Techniques. Storrs, CT: YBS, 1995. 

[6] Lerro, D. and Bar-Shalom, Y., “Interacting multiple model tracking with target amplitude 
feature,” IEEE Trans. Aerospace and Electronic Systems, vol. 29, pp. 494–509, Apr. 
1993. 

[7] Blair, W. D., Watson, G. A., Kirubarajan, T., and Bar-Shalom, Y. “Benchmark for radar 
resource allocation and tracking in the presence of ECM,” IEEE Transactions on 
Aerospace and Electronic Systems, vol. 34, pp. 1015–1022, Oct. 1998. 

[8] Lee, D.G. and Song, T.L., “Performance analysis of NNF-class target tracking algorithms 
applied to benchmark problem,” The 5th Asian Control Conference, Melbourne, Australia, 
July 20-23, 2004, pp. 1602-1607. 

[9] Li, X.R., “The PDF of nearest-neighbor measurement and a probabilistic nearest-
neighbor filter for tracking in clutters,” Proceedings of the 32nd CDC, San Antonio, Texas, 
Dec. 1993, pp. 918-923. 

[10] Bar-Shalom, Y. and Tse, E., “Tracking in a Cluttered Environment with Probabilistic 
Data Association,” Automatica, vol. 11, September 1975, pp. 451-460. 

[11] Fortemann, T., Bar-Shalom, Y., and Scheffe, M., “Multi-Target Tracking Using Joint 
Probabilistic Data Association,” In Proceeding of IEEE Conference on Decision and 
Control, December 1980, pp.807-812. 

[12] Fitzgerald, R., “Development of Practical PDA Logic for Multitarget Tracking by 
Microprocessor,” in Multi-Target Multi-Sensor Tracking: Advanced Application, edited 
by Y. Bar-Shalom, Artech House, Norwood, MA, 1990, pp. 1-23. 

[13] Rocher, J. and Phillis, G., “Suboptimal Joint Probabilistic Data Association,” IEEE 
Transactions on Aerospace and Electronic Systems, vol. 29, No. 2, April 1993, pp. 510-
517. 

[14] Roeccker, A. and Loral, “A Class Near Optimal JPDA Algorithms,” IEEE Transactions 
on Aerospace and Electronic Systems, vol. 30, No. 2, April 1994, pp. 504-510. 

[15] Musicki, D., Evans, R. and Stankovic, S., “Integrated Probabilistic Data Association,” 
IEEE Transactions on Automatic Control, vol. 39, No. 6, June 1994, pp. 1237-1241. 

[16] Pan, Q. and Zang, H., “Multitarget Tracking Using Dominant Probability Data 
Association,” Proceedings of the American Control Conference, January 1994, pp. 1047-
1050. 

[17] Gad, A., Majdi, F. and Farooq, M., “A Comparison of Data Association Techniques for 
Target Tracking in Clutter,” Proceedings of the 5th International Conference on 
Information Fusion, 2002, vol. 2 , 8-11 July, 2002, pp.1126 – 1133. 



Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 SP - 2 - 
 

14

 


