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Abstract:

This paper presents a model-based technique for fault detection and isolation (FDI) of
actuators of a benchmark which schematizes a hydraulic process made up of three tanks.
Takagi Sugeno’s model approach is used for describing the dynamic of the system. In
the same way, the fuzzy membership functions used for constructing Takagi and
Sugeno’s model are combined with local unknown input observers to form robust fuzzy
observer. Sufficient conditions for the existence of this fuzzy observer are derived.  The
stability as well as eigen-value constraints conditions are presented and solved in the
LMI framework. For the observer gives a good estimation without amplifying noise and
with a convergence faster than the dynamic of the system a eigen-value assignment is
necessary. Robust residual signals, generated by these fuzzy observers robust to
unknown inputs are dedicated to supervise actuators. These residuals are sensitive to
faults acting on one actuator and are also insensitive to faults on the others by
considering faults such unknown disturbances. This permits to carry out directly the
isolation of the faulty actuator.
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1. Introduction:

The multiple model approach to nonlinear systems modelling has become one of the
most active research areas in the recent years. Unlike the classical approaches which
attempt to find a global and consequently complex-model, the multiple model approach
is based on Takagi-Sugeno decomposition [1] of the input space of the system in small
areas. Simple local models, usually linear, are used to describe the system in each area.
The global model (multi-model) is an interpolation of the local models using weighting
functions which assess the local validity of the corresponding models and provide
smooth transition between local models. In the same way, for the system observation, a
number of local linear observers [2] are designed and the state estimation is given by a
fuzzy fusion of local observers.
For LTI systems, the robust residual generation by unknown input observer [3] currently
reached a maturity degree in FDI. A FDI-Toolbox is developed in Matlab©
programming environment. It includes a number of functions to the design of observer-
based and parity space FDI systems including both residual generation and evaluation
[4]. The application of these scientific results to multi-model cases seems very
promising. A FDI scheme proposed in [5] is based on Takagi-Sugeno fuzzy models for
normal operation and for each fault. A fuzzy decision making approach is used to isolate
incipient and abrupt faults of a pneumatic servomotor actuated industrial valve. The
continuous unknown input fuzzy observer (UIFO) [6] [7] allows to account for the good
estimation of the states of nonlinear systems represented by Takagi-Sugeno model in
spite of the presence of unknown disturbances. In this paper, by considering faults in the
equations of the model, other conditions are added to the inherent constraints of the
UIFO to generate residuals for detecting actuator faults especially for non linear systems
case. The linear matrix inequality approach (LMI) [8] is used to analyse the global
stability of the UIFO.
The paper is organised as follows: In Section 2, the Takagi Sugeno model is discussed
and quadratic stability condition, used to ensure the stability of the UIFO, is underlined.
The design of UIFO in presence of actuator/system faults is presented in Section 3,
where also existence and convergence conditions are demonstrated and fault
detectability conditions are analysed. The proposed UIFO is used to generate residuals
that are necessary for detecting and isolating actuators faults of a three tanks process
where simulation results, in section 4, demonstrate the effectiveness of the proposed
study. Finally, the conclusions are drawn in section 5.
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2. Takagi-Sugeno (T-S) model:

2.1 Modelling:

Real physical systems are often non linear. As it is delicate to synthesize an observer for
a nonlinear system, the idea of multiple models is preferred. The approach is to
apprehend the total behavior of a system by a set of models (linear or affine), each
model characterizing the local behavior of the system. The local models are then
aggregated by an interpolation mechanism to form the global model.
The continuous dynamic model proposed by [1] is described by fuzzy IF-THEN rules,
which represent local linear input-output relations of nonlinear systems. The ith rule of
this fuzzy model is of the following form:
IF w1(t) is Ni1 and ...and  wg(t) is Nig THEN
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where x(t)  Rn, u(t)  Rr, y(t)  Rm  and Ai , Bi , Ci and Di are time invariant matrices
of appropriate dimensions. The vector w(t) is termed the premise variable or decision
variable which may depend on the known inputs and/or the measured state variables,
whereas Nij is a fuzzy set, M is the number of If-Then rules and g the number of
premises variables.
Given the input vector u(t), the global state and output of the system are inferred as
follows:
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))t(w(N jij  is the grade of membership of the premise variable wj(t) to Nij .   The
function µi(w(t)) is normalised and satisfies, for all t, the following constraints:
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At each time, ))t(w(iµ  quantifies the relative contribution of each local model to
construct the global model or multi-model. Choosing the number M of local models of
that multi-model may be intuitively achieved taking account the number of operating
point. However, determining matrices Ai,  Bi,  Ci and  Di needs the use of specific
identification technique [9]. From a practical point of view, these matrices are those
used to describe the local functioning around the ith operating point. That is exactly the
case at the ith operating point, when ))t(w(iµ =1 and ))t(w(jµ = 0 with j  i.

2.2 Stability analysis

The stability of the T-S autonomous system described by the following equation:
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is verified using the following theorem:

Theorem [10]: The continuous fuzzy system described by (4) is globally-
asymptotically stable if it there is a common positive symmetric matrix X such that the
following inequality holds:

0XAXA i
T
i <+ (5)

M...1i =∀

This theorem, which gives a sufficient condition for ensuring stability, is an extension
of the second Lyapunov theorem. The matrix inequality in (5) can be solved using the
Linear Matrix Inequality (LMI) method [8]. However, if the number of local models is
large, it might be difficult to find common matrix X and it’s well known that, in a lot of
cases, a common positive definite matrix doesn’t exist, whereas the system is stable. To
overcome this limitation, authors in [11] propose an analytic way to find a Lyapunov
but non quadratic function that guarantees the stability of the global T-S continuous
fuzzy model. This is an alternative way used to design fuzzy regulators and/or fuzzy
observers. The Lyapunov approach will be used in the next section to study the stability
of the estimation error.
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3. Unknown Input Fuzzy Observer design (UIFO)

Let us consider a nonlinear system represented by the following multi-model subject to
unknown inputs and faults:
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where Ei  Rn×q  is the unknown input matrix over state variables, Ri  Rnxp the
actuator/system faults matrix, dxi Rn×1 is introduced to take into account the operating
point of the system and Fi  Rm×q the unknown input matrix over outputs variables.
In this paper, we consider that there is no non-linearity in the system output equation,
(i.e Ci = C and Fi=F M...1i =∀ ) and there is no input term on y(t) (Di = 0, M...1i =∀ ). In
this situation the output equation is:

)t(Fd)t(Cx)t(y +=                                                                                                        (7)

This is a very common situation in practice because the output equation represents the
relation between measurements and the system state variables.

3.1 Existence conditions of the UIFO to fault detection

The structure of UIFO results of the aggregation of local observers [6][7]and the
obtained analytical form is particularly adapted for studying the stability and the
convergence property of the state reconstruction error and residuals. The numerical
aspect related to the determination of matrices of this observer in view of fault detection
will be also analysed. For a non-linear dynamic system described by the T-S fuzzy
model (6), an unknown input fuzzy observer can be designed to estimate the system
state vector. For the unknown input fuzzy observer design, it is assumed that the fuzzy
system model is locally observable, i.e., all pairs (Ai,  Ci) (i = 1...M) are observable.
Using the same idea in T-S fuzzy model, an UIFO utilises M number of loca1 linear
time-invariant observers as below:
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where  Ni  Rn×n, Gi  Rn×r, Li  Rn×m are the gains of the ith local observer, dzi  Rn×1  is
a constant vector and H  Rn×m  is a matrix transformation. Indeed, the observer only
uses known variables u and y, variable d being not measured.
These matrices have to fulfil some properties in order for (8) to be a good observer. The
objective is to ensure the convergence of the estimated state towards the true state.
The estimation error is defined as:

)t(x)t(x)t(e
^

−=                                                                                                              (9)

and the residual is:

)t(xC)t(y)t(r
^

−=                                                                                                         (10)

The estimation error dynamic is given by the following differential equation:
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3.1.1 Existence conditions of the UIFO

If the following sufficient conditions for the existence of UIFO are satisfied:
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then equation (11) is reduced to:
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also when no fault occurs (f(t) = 0):
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3.1.2 Global convergence of the UIFO

From theorem mentioned in section 2.2, if a common positive symmetric matrix X
exists such that the following inequality holds:

0XNXN i
T
i <+ (15)

M...1i =∀

Then the continuous fuzzy observer described by (8) is globally- asymptotically
convergent and the error dynamic is globally- asymptotically stable and the rate decay
of state error estimation and residual (if no faults f(t)=0) is strongly depending on the
matrix N such :

∑
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3.2 Eigen-value assignment

To ensure good convergence dynamic of the UIFO, stability in the presence of
uncertainty such as noises and for avoiding any delayed detection the eigen-values of
all local observers are assigned within a region S(a,b) witch is the intersection between
a circle of center (0,0) and radius b, and a strip in the left hand side of the complex
plane with real part smaller than a, then the UIFO is stable in the S region if there exist
a matrix X definite positive such that for i = 1,..M and in case of F = 0 and Ei = E, we
have:

The solution of the system (12) depends on the generalized inverse (CE)- of (CE).
To propose an observer design strategy, inequalities (17) are solved by LMI
formulation.
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3.3 Fault detectability conditions

a) A well known fault detectability condition for LTI systems [3] is Rf(t)  0, and
then for  multi-model representation:

0)t(fR i ≠                                                                                                             (18)
M...1i =∀

That is the structures of the distribution matrix of faults Ri must be chosen so that faults
don't mask themselves. In more over for fault diagnosis [3] and [12], impose that the
number of disturbances and/or faults q+p must be strictly lower than the number m of
outputs.

b) From (13) generally, it is difficult to have a solution for the equation PRi = 0
when  i = 1…M, but this is possible when R1 = R2…= RM = R.
Indeed, when we consider the same distribution matrix of faults acting on all local
models and when PR = 0, the residual still equal to zero even in presence of faults, this
situation is far from the desired objective. Then, in presence of faults, the distribution
matrix R must in addition to conditions mentioned in (18) satisfies the relation in (19),
inherent to the structure of the observer:

−−≠ )CR(RH                                                                                                               (19)

Contrainst (19) is deduced from P = I + HC and PR  0 where (CR)- is the generalized
inverse matrix of (CR).
-The UIFO is useful for detecting actuator and system faults only if in addition to
conditions in (17), the two conditions in (18) and (19) are satisfied.
-When all matrices Ei are zero, we obtain the fuzzy proportional observer proposed by
Ma and al [2] for fuzzy control of nonlinear systems.

4. Example:

Dynamic models may be linear, in the simplest cases, or nonlinear. They may include
ordinary differential or partial derivatives equations. For the need of diagnosis, we can



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE087 - 9

use the same mathematical model that used for control laws. [13].
To illustrate the performance of the unknown input fuzzy observer for state estimation
and residual generation, we consider the system studied in [14] and illustrated in Figure
(1). The plant consists of three cylinders T1,  T2 and  T3 with cross section A. They are
connected serially with one another by cylindrical pipes. A single so-called "nominal"
outflow valve is located at T2. The out-flowing liquid is collected in a tank which
supplies the pumps Q1 and Q2, where q1 and q2 are the mass flow rates. The pumps are
controlled such that a well-defined incoming mass flow corresponds to the reference
input introduced to the pump controller. The three water levels x1,  x2 and x3, governed
by the constraint x1 > x3 > x2, are measured via pressure sensors. The process model is
given by (20) and the numerical values of the physical parameters of the system are
listed bellow:
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Figure (1): Three Tank System

In (21),  i  (i = 1,2,3) are scaling constants for the relation between the cross-section of
the connecting outlet pipes and the mass flows going through them and the unknown
input d(t) denotes the additional mass flows into the tanks caused by leaks or plugging
in the various tanks or pipes. Simulations were carried out initially in absence of faults
by reaching three operating points (M = 3) according to the variations of the inputs like
shown in Figure (2). The unknown input d(t) is chosen a random signal.

1 = 0.78, 2 = 0.78, 3 = 0.75, A = 154x10-4 et Sn = 5x10-5 and g = 9.8N.Kg-1

T1 T3 T2

Q2

x1 x2
x3

A

Sn

Q1
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    Figure (2): Variations of the inputs Figure (3): Variations of the outputs

Each output signal is disturbed by a Gaussian signal of zero mean and standard
deviation equal to 5x10-3.  Figure (3) illustrates the estimated outputs with the changes
of operating points at the times: 3100s and 8000s. The selected initial conditions for the
state estimation are different from the state values and the area of S defined by a = 0.02
and  b = 0.08 makes it possible the observer to quickly converge with a good stability.
The residuals generated with the unknown inputs fuzzy observers are presented in
Figure (4). In this study, two residuals are generated to supervise the two actuators. It
can be noted that these residuals are zero mean and are different from zero at the
beginning of the estimation due to the difference between initial conditions of real and
estimated states. The residuals are also slightly different from zero at times of
transitions from an operating point to another. These imperfections are directly related
to modelling uncertainties. However, considering that they are of low amplitudes and, if
necessary, by using adaptive thresholds, these residuals are considered of zero mean.

Figure (4): Residuals without faults: First actuator(left:a), Second actuator(right:b)

A fault is now considered on pump 2, with a 20% loss of its nominal flow value, which
appears at the time t = 7000s, just before the change to the third operating point
(Figure 5).
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 Figure (5): Inputs with a fault on Q2   Figure (6): Estimated outputs with a fault on Q2

The dynamic evolution of all levels is consequently affected by this fault. Figure (6)
illustrates that the outputs are different from those without faults. The presence of a
fault generates changes of operating points, and thus decreases the initial performances.
In spite of the presence of unknown inputs and noises, the continuous fuzzy observer
well estimates these changes.  As shown in Figure (8), the residual dedicated to
supervising the second actuator moves slightly away from zero at t = 7000s because of
fault’s low amplitude. At t = 8000s, the control law q2 increases from the value of
0.9259x10-5m3/s to 5.5830x10-5m3/s, a transition from the second operating point to the
third one takes place in spite of the fault. The fault amplitude (20% of q2) increases,
also the residual increases significantly at that time like clearly noticed in Figure 8. One
can also note in Figure (7), that the residual dedicated to the first actuator remains
insensitive to the fault which is considered by the observer as an unknown input and
thus directly eliminated from this residual.

    Figure (7): Residual dedicated to Figure (8): Residual dedicated to
                  the first actuator                                             the second actuator

A same procedure is used to detect and isolate faults on the first actuator. One then
obtains a DOS scheme (Dedicated Observers Scheme) that allows the detection of
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simultaneous actuators faults.

6. Conclusions

In view of fault detection and isolation, the design of unknown input fuzzy observers for
a T-S model has been proposed in this paper. Such observer relies on the existence of a
quadratic Lyapunov function ensuring asymptotic convergence. The stability and
convergence of the fuzzy observer requires however the consideration of coupling
constraints between these local observers, these constraints lead to the resolution of a
LMI problem by finding a common Lyapunov matrix X such as the fuzzy observer is
stable and convergent. The reconstruction of the state vector is then possible. The
simulation results show that the estimations are constraint to satisfying several
conditions of existence and convergence. For FDI purpose, the output estimation is
required. The direct application of this observer when taking into account unknown
inputs and noises on outputs for residual generation, shows the well detection of faulty
actuators with a simple procedure of isolation.
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