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Abstract:

This paper investigates the problem of an optimal control for linear systems with time
delay and its solution by means of Hopfield neural networks. First, we discrete the
system and make it like a system without disturbance then design a disturbance
compensator for the system. Second, the dynamic optimization problem is
transformed into a static optimization problem via linear state space analysis
methods. The parameters of the Hopfield neural network are adjusted such that the
network solves the static quadratic optimization problem yielding the optimal control
sequence. The outputs of the neurons of the network represent the values of the
optimal control signal in each time step.
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1. Introduction:

Neural computation has witnessed its successful applications in control and
estimation problems in the past years. Many successful neural controller design
methods are reported in the literature [1-10]. There are also a variety of papers
discussing neural estimation and identification [2], [11-13].
Recurrent neural networks, especially Hopfield-type neural networks [14] are mainly
employed in optimization and pattern recognition problems. However, they are also
used in control and estimation problems. Karam et. al. solved the algebraic Riccati
equation for robust optimal control of a nonlinear system utilizing a recurrent neural
network [15]. As a noticeable application, Hopfield neural network was used to solve
the optimal control problem for homing missile guidance [16].
In another significant approach, the Linear Quadratic optimal control problem was
solved for discrete-time systems by Hopfield neural network such that the network
yields the optimal control sequence [17], in contrast to the aforementioned
approaches which make use of the network to find the parameters of the optimal
controller. Furthermore, the LQ tracking problem was solved via this approach [18].
Shen and Balakrishnan [19] proposed a class of modified Hopfield networks for
optimal control of linear and nonlinear systems. Such networks solve the State
Dependent Riccati Equation (SDRE) finding the optimal control gain sequence.
In this paper, we use a discredited version of the continuous Hopfield model to solve
the optimal disturbance rejection problem for time delay system.  First, we discrete
the system to change it to a system without time delay. Second, using the well-known
internal model principle, we design a ‘disturbance compensator’ for the problem.
This approach guarantees that the closed loop system has zero steady state error. This
is not always achievable with the conventional LQ approaches.
In section 2, we review the optimal disturbance rejection problem. In section 3, a
disturbance compensator is designed and the classical theory of optimal control is
employed to solve the optimal disturbance rejection problem. In section 4, Hopfield
neural networks are introduced briefly. Additionally, it is shown that they are capable
of solving the LQ optimal disturbance rejection problem provided that their
parameters are set properly. In section 5, some simulation results are presented and
finally, in section 6, some conclusions are derived.

2. LQ Optimal Disturbance Rejection: The Regulatory Problem:

Assume the following linear time variant state equation:
1 2x((k 1)T) A (k)x(kT) A (k)x((k nT)T) B(k)u(kT) D(k)v(k) t 0

x(k) (k) nT k 0
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In these equations we assume that time delay proportional to sampling time. By
following transformation:
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We can change the equation (1) to the following linear time variant state equation:

kkkkkkk dDuBxAx ++=+1                                                                                          (2)
in which

1×ℜ∈ n
kx  is the state vector,

1×ℜ∈ r
ku  is the input vector and

1×ℜ∈ p
kd  is the

vector of known disturbances. In the LQ regulatory problem it is desired that the state
vector eventually tends to zero minimizing the following performance index subject
to the state equations:
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Here
nn

kSH ×ℜ∈,  and
nn

kQ ×ℜ∈ Nik ...= are positive semi-definite matrices and
rr

kR ×ℜ∈  is
a positive definite matrix.
However, this approach may not be able to yield a zero steady state error in some
cases.  To reach a zero steady state error, we make use of the internal model principle
[20] to design a ‘disturbance compensator’.

3.Analytical Solution of the Optimal Disturbance Rejection Problem:

Here, we design a disturbance compensator for the problem to ensure that the states
tend to zero eventually.
Assume that:

1. (A,B) is completely controllable
2. Rank (B)=Rank(D)=Rank([B D])=r
3.  d 0
Therefore, there exists a unique non-singular matrix

rr
kM ×ℜ∈ such that kkk MBD = .

Then we have:

)(1 kkkkkkk dMuBxAx ++=+                                                                                             (4)

Now assume that:
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kkkk dMu +=ζ                                                                                                               (5)

From (5) we have:

1111 ++++ +=ζ kkkk dMu                                                                                                        (6)

Since the disturbance is assumed to be known, its dynamics could be assumed to obey
the following difference equation:

kkk dd Γ=+1                                                                                                                      (7)

From (6) we have:

kkkkkkkkkk uMMuMM 1
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We are ready to transform the state equations into a new augmented form by defining:
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By (4), (6), and (9), we can obtain an (n+r) dimensional augmented system:
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We select the following quadratic cost function to solve the problem:
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According to the results from optimal control theory, the optimal control sequence is:
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whereby Sk  is the solution to the following matrix Ricatti equation:
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 with the boundary condition:

HS Ni =+                                                                                                                      (15)
 Obtaining kυ  yields the optimal control sequence for the original system (2).
Assume that:
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Equation (9) then yields:
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Therefore, the optimal control law for the original system could be derived by the
following difference equations:
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It is obvious that the optimization problem reduces down to finding the vector of
optimal control efforts

TT
Ni

T
i

T
iiU ],...,,[ 11 −++ υυυ= . This is performed analytically via

solving the Riccati equation. In the present work, the neural network is made to find
the optimal control sequence. In order to translate the problem to one which the neural
network is capable of solving, we solve the system (1) in terms of the initial state
vector and the vector of optimal control efforts:

ikikk UΨ+χΦ=χ                                                                                                          (19)
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where kΦ is the state transformation matrix and is obtained by:
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Furthermore,
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1×ℜ∈ rN
iU is the vector of optimal control efforts:
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4. Hopfield Neural Networks:

Hopfield neural network is a recurrent neural network driven by the following
equations:

))(()(
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                                                                                                  (23)

where n(t) is the synaptic signal and a(t) is the output of the network. W is the weight
matrix, b is the threshold vector of the neurons and  is an important time-constant of
the network. f(n) is a sigmoid function and acts component wise.
For simulation purposes, an Euler approximation of the derivative is used:
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The network is proved to minimize the following energy function, provided that f is
selected to be a steep sigmoid function:
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From the above discussion, it is clear that in order to find the optimal control
sequence, the connection weight matrix and the threshold terms should be determined
such that E(t) corresponds to the performance index to be minimized, and the
stabilized output of the network is the optimal control sequence.
As we mentioned, we should find W and b such that minimization of the energy
function of the network is equal to finding the optimal control sequence.
Utilizing the solution of the discrete system of (1) which is described in (19), the
objective function is written:
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We define the following diagonal partitioned matrix:
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This enables us to write:
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The aforementioned terms could be expanded, but it is clear that some terms like
iNi

T
Ni

T
i H χΦΦχ ++  which are independent of iU should be neglected, because they have no

impact on the optimization procedure.
Thus we introduce the modified version of iJ  as iJ~ :
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From the equation (29) it is obvious that in order for the Hopfield network to
minimize iJ~ , the weight matrix and the threshold vector must be as follows:
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The weight matrix of the network is symmetric, leading us to conclude that the
network is stable [21]:

000 =⇔=≤
dt
dn

dt
dE

dt
dE

                                                                                                   (31)

Remark1. The previous discussion on applying the network to solve the optimization
problem in the interval [-1,1] is extendable to any interval [ ]. This could be
achieved by modifying the gain of the amplifiers of the Hopfield circuit [21].  In case
of the difficulties arisen in the hardware implementation, provided that a bound on the
elements of the system’s input vector is known, the problem could be translated to a
normalized version by manipulating the matrix B. The aforementioned condition,
however, is a mild condition.

Remark2. It is frequently mentioned in the literature that optimization via Hopfield-
like networks suffers from the problem of local minima [21]. It is not, however,
serious for our optimization problem. To clarify this, note that optimal control is a
well-defined problem due to the restrictions on the weighting matrices Q and R. On
the other hand, it is known that the abovementioned selections of the network
parameters (proper W, b, , and a high gain amplifier with  <<1) forces the network
to solve the same optimization problem as the well-defined optimal control problem.

Remark3. This result is interesting from another aspect. It is promising in the
complete on-line solution of the optimal time delay problem, provided that the total
elapsed time for identification of the plant, measurement of the initial conditions and
adjusting the parameters of the Hopfield circuit is less than the sampling period of the
system.  It is not an unachievable condition with the current speeds of
microprocessors. However, precise mathematical analysis, based on the convergence
speed of the Hopfield network might be helpful.

5. Simulation Results:

In this section, we present a simple numerical example to validate our approach in
using the neural network to solve the dynamic optimization problem for time delay
systems.
Consider the following single state system with an additive step disturbance:

kkkkkkk zdubxax ++=+1                                                                                                 (32)
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 Here, ak=0.9, bk=0.02, dk=0.3, x0=0.5 and zk is assumed to be a unit step disturbance.
A Hopfield neural network is employed to minimize the cost function:
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                                                                                            (33)
The state trajectories of the system are shown in Fig.1. It is easily seen that the state
trajectories of the optimal and neural controllers are very similar.

Figure (1): Optimal State Trajectoriy of the System, State Trajectory Found
by the Hopfield Neural Network, Error

Figure (2): Time Evolution of the Energy Function of the Hopfield Neural Network
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Figure (3): Output of the Hopfield Neural Network
6. Conclusion and future work:

In this paper, we presented a Hopfield neural network for solving the optimal time
delay problem. First we discredited the system and then designed a disturbance
compensator based on the Internal Model Principle. After that we made the network
to solve the problem. The network is able to solve the optimal control problem and
might be suitable for online implementation. In the future, deviation of the control
inputs calculated by the neural network from the optimal control signal should be
calculated and the robustness of the system to such errors should be investigated.
Furthermore, based on the convergence analysis of the Hopfield network, and the
technological restrictions of implementation of the related circuitry, a theoretical
bound on the calculation time of the control signal may be found. The results will be
helpful in online implementation of such a controller.
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