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Abstract:

In this paper we first present the exponential stability of discrete event
dynamic systems (DEDS) available in the literature. The result is then
applied to a class of discrete event systems modeled by Petri net. In
particular it is shown that a Petri net model of a discrete event system will be
exponentially stable if the transition firing obeys certain Lyapunov type
rules. In other words, the result obtained here shows that if the Petri net has a
given marking at a certain time and the firing of the transitions are done
according to certain rules and conditions then the marking of the system
states will eventually go to zero in an exponential manner. As a result the
finite capacity buffers in the system will not suffer any overflow. An
example is given at the end in order to give more insight to the results
obtained here.
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1. Introduction:

Discrete Event Systems (DES) are dynamic systems which are discrete in
time, discrete in space, and asynchronous (or event-driven). Application
domains include manufacturing systems, database management systems,
traffic systems, and communication protocols. A discrete event system can
be modeled using different approaches such as queuing networks, automata,
max-plus algebra, Petri net, etc. Similar to almost all control problems,
stability is an important issue for DES, however one needs to define what he
means by stability in this case.

Recently, much attention has been devoted to studying stability properties of
DES [1], [2], [3], [4]. Different types of stability are defined in the literature
such as stability in the sense of Lyapunov, asymptotic stability, exponential
stability, Lagrange stability, practical stability, finite time stability, etc. In
[4], Lyapunov stability of DES, modeled by Petri net, is defined. In this
paper exponential stability of DES modeled by Petri net is described.

Section 2 gives some preliminaries and definitions that are needed for the
proceeding sections. The basics of Petri nets are discussed in Section 3 and
the sufficient conditions for exponential stability of Petri nets are presented
in Section 4. Section 5 gives an example that uses the results of the theorem
stated in Section 4 to show exponential stability of a simple discrete event
system. The conclusions are stated in Section 6.

The following notations and definition will be used throughout this paper.
N ={1,2,3,...}; =[0, );

={ };  0;
A function f(n, x), f: ×  is said to be non-decreasing in X if for any
given two vectors  X,Y  the following is true.

 X , Y  ,  , (i N), n  , then f(n, x)  f(n, y).

2. Preliminaries:

Consider a “discrete” system described by the following first order
difference equation:

X(n+1)=f[n, x(n)], x( )                                                                               (1)



Where n , x(n) , and f: ×  is continuous in x(n). We define
a vector Lyapunov function such that it satisfies the Lyapunov properties
given in [4]. As defined in that reference, V is a Lyapunov vector such that
V(x) and V(n,x(n)) are both greater than zero (positive definite) and

V(n,x(n)) is defined as:
V(n,x(n))=V(n+1,x(n+1))-V(n,x(n)).

To proceed further, for a given discrete event system, the following
notations are introduced.

• X : Is the set of states
• x: Is a state
•  Is a closed invariant set.
• E: The set of finite event trajectories
•  E: A set of valid trajectories that is assumingly specified as part

of the modeling process.
• : A set of allowed trajectories.
• :  For  k {N }, is used to denote the sequence of

events( )
• X( ): State that can be reached at time k from  by
• (M,M')= .
• S( )={x: 0< (x, )< r}.

3. Petri Net:

In this section a brief description of Petri net will be given. A Petri net is a 5-
tuple written as PN={P,T,F,W,M0} where

• P = {p1,p2,…,pm} is a finite set of places
• T = {t1, t2, …, tn} is a finite set of  transitions
• F  (P×T) (T×P) is a set of arcs
• W: F N, is a weight function; N = {1, 2, 3, …}
• : P N is the initial marking

Note that P T= , P .

An ordinary Petri net without any initial marking is denoted by N and a Petri
net with a specified initial marking is denoted by (N,M0). Let ( ) denote
the marking (the number of tokens) at place P at time k and let

=[  denote the marking (state) of PN at time k. A



transition T is said to be enabled at time k if ( W( ) for all P
such that( F. A transition T can fire if it is enabled at time k. The
next marking for P after a transition fires is given by:

( ) = ( ) + W( )  W( ).                                                          (2)

Let W( ), =W( ) and define an n×m integer matrix A as
A= . Furthermore, let  denote the firing vector. Then
the matrix describing the dynamical behavior of a system represented by a
Petri net will be given by:

                                                                                           (3)

Notice that if M' can be reached from some other marking M and if our
sequence firing of d transition is with corresponding firing vector

 we obtain that

M'=M+ U, U=                                                                                  (4)

4. Exponential stability of DES & Petri Nets:

In this section, a theorem will be presented at first. The results obtained from
this theorem are then used to propose a new theorem that gives the sufficient
conditions for a PN to be exponentially stable.

Theorem 1: (see [4])
In order for the invariant set  to be exponentially stable with respect to Ea

it is sufficient that in a neighborhood S( ;r) there exists a specified function
V and three positive constants c1, c2, and c3 such that

i)  c2>c3 &
ii) c1 (x, V(x) c2 (x, ) &

iii) V(X( ), ,k+1))-V(X( , ,k)) -c3 (X( , ,k), ) for all
x0 S( ;r) and for all  such that =Eke, (e ) and E

Ea( ) and all k 0.
Proof :
Given x0 S( ;r) let X0(k)=X( , ,k) for any Ek such that E  ( ) and



all k 0. Also let V'(k)=V(  (k)) and assume V'(k) satisfies V'(k+1)-V'(k)  -
(c3/c2)V'(k). Hence V'(k+1) (1-c3/c2)V'(k) or V'(k) .  As  a

result c1. (  (k), . Since V'(0) c2 (  (0), ), then one can
combine the previous equations to obtain

c1 (  (k), c2 (  (0), )                                                           (5)

Or

(  (k), c2/c1. . (  (0), )                                                       (6)

Therefore there must exist an  and  such that

(  (k),  . (  (0), )                                                                    (7)

Hence the system is exponentially stable. If the properties of above theorem
hold on all of X, then the invariant set  is exponentially stable in the large
with respect to Ea.

Theorem 2:
A discrete event system modeled by Petri net is exponentially stable if there
exists a specified vector  with three positive constants c1, c2, and c3 such
that the following conditions are satisfied.

i)  c2>c3 &
ii) c1.r  c2.  &

iii) [(c3/c2) ].  0

Proof:
We choose a specified function V such that the above conditions are
satisfied. That is

  V(M)=inf{ }=                                       (8)

where
• V(M): Lyapunov function
• : an ''m vector" to be chosen



We also select three positive constants c1,c2, and c3 such that c2>c3 and
c1 (M,  inf{ (M, )} c2 (M, )èc1  inf { (M, )} /sup{ (M, )}
&
c2 (inf { (M, )} /inf{ (M, )})=1
Now we choose M such that:
S( ,r)={M:0< (M, r}èc1.r c2.
notice that V must only satisfy the appropriate properties on {M:
0< (M, r }
V(M(k+1))-V(M(k)) -c3 (M(k), )
Let V(M(k))=V'(k);
so we have

V'(k+1)-V'(k)  -c3 (M(k), )
and

V'(k)  c2 (M(k), )
Therefore

V'(k+1)-V'(k) -(c3/c2).V'(k)         (*)
then

V'(K+1) (1-c3/c2)V'(k)
V'(K) (1-c3/c2)V'(k-1)

From the above one can write
V'(1) (1-c3/c2).V'(0)

So for V'(k) have
V'(k) 

From condition (i) and the last result one can write:
c1 (Mk, )=c1 (k, ) 

V'(0)  c2 (0, )
Hence (  (k), c2/c1 (  (0), ). So there exists an  and  such
that ( (k), (  (0), ). Therefore the system is exponentially
stable if we choose V'(k)= , and let  be a positive vector. This implies

V'(K+1)  (1  c3/c2).V'(k)                                                                         (9)
( )  (1  c3/c2).                                                                          (10)

From matrix equation we can write (  (1  c3/c2).  or
[ ) 1 )  ]  0 which leads to the following:



[(c3/c2)  0                                                                             (11)

So we have shown that we can find positive  such that when (**) is
satisfied our system will be exponentially stable without any limitation on
our firing vector ( ). However, if we select  = [ , r > 0, we must
select a particular firing vector ( ) to satisfy equation (**) and as a result
we are forced to eliminate some markings.

5. An Example:

In this section an example is given to show that if the sufficient condition
stated in the previous theorem is satisfied then the system is exponentially
stable. In particular we let the system have some initial marking M(0)
(number of parts in the buffers) with matrix A given below and show that
the tokens from the buffers are removed with an exponential rate. In this
example vector  is considered to be fixed and the firing vector (U) is
selected to achieve the stability.

For the example under consideration let the following be defined:

 = ,  A= ,  =

Furthermore, let the positive constants c1 and c2 be selected as c1=0.5 and c2
. From the second condition of Theorem 2 we have:

{(c3/c2)  + u(k) }    0
So,

{( c3/c2) T + }  0

Now let (c3/c2)=q for some positive real q. We then obtain the following:

45q+ = 45q

We now select U(0)= T and select q such that above non-equality is
satisfied. As an example we let q=(c3=1)/( c2=15). Therefore the above
equation becomes:

45(1/15)+ = 1

At step 3 ,the marking at step 1 can now be obtained from the following:



M(1)=M(0)+ u(0) = + =

At Step 3 we have:
(1/15)[8+14+19]+u(1).A.

(41/15)+
Then we choose

 u(1)=  (41/15) 5

step 4:

M(2)=M(1)+ .u(1) = + . =

Step 5:
(1/15) . [6+12+18]+u (2).A.

(36/15)+

Then we choose

u(2)=  (36/15) 4

step 6:

M(3) =M(2)+ .u(2) = + . =

If we continue this process we will eventually empty all buffers as can be
seen from first few steps of the example. In particular, the markings are
given by:

 M0     M1     M2      M3

è è è                                                                  (44)

Notice how the markings are decaying in an exponential manner.

6. Conclusions:

An approach to investigate exponential stability of discrete event systems
modeled by Petri net is presented in this paper. In particular, it is shown that
if certain sufficient conditions are satisfied, then the buffer markings will



decay exponentially. The significance of this result is that it guarantees the
buffer will not overflow in a physical system such as a production system. It
is important to note that the conditions given here are the sufficient
conditions only. Similar to Lyapunov stability, finding a vector  that
satisfies the conditions given in Theorem 2 may be a difficult task and not
being able to find one does not imply that the system is unstable. Finding the
necessary conditions for exponential stability of discrete event systems
modeled by Petri net is an interesting topic for future research.

References:

[1] Kevin M. and Kevin L. Burgess, "Stability analysis of discrete event
systems", ISBN Passino 0-471-24185-7, WILEY-INTERSCIENCE,
New York, 1998.

[2] Z. Retchkiman, A vector Lyapunov function approach for the
stabilization of discrete event systems, accepted for publication in
international Journal of Applied Mathematics.

[3] Z.Retchkiman, "Practical stability of discrete event systems using
Lyapunov and comparison methods", proc. ACC, 98, Philadelphia,
Pennsylvania, 1998.

[4] Zvi Retchkiman, "Stability and stabilization techniques for discrete
event systems modeled by coloured Petri net", Mexico, C.P.07738,
USA, Chicago, IEEE 2000

[5] Zvi Retchkiman, "A vector Lyapunov function approach for
stabilization of discrete event systems", Mexico, C.P.07738, USA,
Chicago, IEEE 2000.




