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Abstract:
Aided navigation system, in particular GPS/INS integrated navigation system, is a
growing approach for both civilian and military applications. The availability of low
cost MEMS-based inertial sensors aided with GPS dominated enormous research for
both land and small airborne vehicle navigation. This paper addresses improving the
performance of MEMS-based inertial sensors, for integration with GPS for land
vehicle navigation applications, so that it becomes comparable to that of tactical grade
sensors. Experimentally, the general performance characteristics of MEMS-based
inertial sensors and their variations are investigated. This investigation helps finding a
proper algorithm to efficiently model the variation of those performance
characteristics. In addition, the problem of the integrated system is discussed and its
KALMAN filter formulation is outlined. Such a filter calculates the best estimates for a
set of parameters from all data collected up to the processing epoch; and it also can
predict the subsequent progress of the process; The basic schemes commonly used for
integrating inertial and GPS are given. The paper addresses issues of reducing sources
of errors and consequently increases the accuracy of the required measured quantities.
An experimental work has been conducted in this study for error modeling
characterization for physical low cost IMU. The sensor data required for estimating the
error coefficients is obtained using the turntable associated with testing facilities and
acquisition system. A strap down inertial navigation (SDINS) algorithms has been
carried out and verified using accurately real measurement data. Finally, an integrated
GPS/INS system is developed, verified and tested in a field environment. A vehicle test
was performed under varying operational conditions. Experimental results show an
adequate performance for an in progress project. The performance analysis results are
very relevant to system design and platform trajectory.
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1. Introduction:
 Basically, navigation is the art of knowing where you are, how fast you are moving
and in which direction. Inertial navigation is accomplished by an Inertial Measurement
Unit (IMU) that integrates the output of a set of sensors to compute position, velocity,
and attitude. IMU is a sensor assembly constructed by inertial sensors such as
accelerometers and gyros. An IMU can measure the linear acceleration and angular
velocity of a vehicle to calculate its navigational information, and is the core
equipment in an inertial navigation system [1], [2]. An ordinary IMU consists of three
accelerometers and three gyros. In general, the sensors in an ordinary IMU have an
orthogonal configuration. Therefore, this IMU cannot detect the faults of the sensors.
In this case, the navigation system may have an enormous error due to these faults.

Inertial Navigation is a dead reckoning technique, so it suffers from one serious
limitation: drift rate errors constantly accumulate with time. Because its drift errors
always accumulate, an inertial navigation system that operates for a long time must be
updated periodically with accurate positioning information. This can be accomplished
by using an external navigation reference such as GPS. The objective of any INS is to
determine the location, velocity and acceleration of an object with respect to some
reference frame. Convenient INS achieve these objectives by performing first and
second integrations to acceleration – vector components in the three main directions x,
y, and z. Thus, the accuracy of INS constituted of gyroscopes and accelerometers relies
on the internal errors of these sensors.

The position accuracy requirements can be satisfied using GPS and/or DGPS.
However, the raw data output rate of a typical GPS receiver is limited to 1-2Hz. For
land and/or small airborne vehicle navigation applications the GPS data rate is too low.
In this case high rate IMU data can serve to interpolate the GPS position data. Another
aspect of INS usage is the ability of extrapolation in GPS data gaps. Additionally,
satellite based navigation systems cannot supply the orientation parameters with the
required temporal resolution and the necessary accuracy. On the other hand also the
INS navigation accuracy can be improved by GPS information; through data
integration the sensor errors of the INS can be estimated.

Integrated GPS/INS systems have been developed in order to overcome the inherent
drawbacks of each system. Moreover, such a system is well suited for trajectory
determination, as it can be easily described using position and attitude information. In
such an integrated system, low data rate, high accuracy GPS measurements can be used
to estimate and to correct the error states of the INS within a dedicated Kalman filter.

The integration of GPS with INS can be implemented using a Kalman filter in such
modes as loosely, tightly and ultra-tightly coupled. In all these integration modes the
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INS error states, together with any navigation state (position, velocity, and attitude) and
other unknown parameters of interest, are estimated using GPS parameters.

In principle the GPS/INS integration can be done in two different ways. Firstly a
near hardware connection between both systems is conceivable. Thereby the INS
sensors support the tracking loop of the GPS receiver. A fast reacquisition of the
satellite signal after a gap could be one potential advantage of such a tight linkage.
Secondly there is the software sided integration in which both sensors are physically
separated and only their measurements will be integrated. This strategy can be
subdivided: in a central filtering method (closely coupled filtering) and a decentralized
approach (loosely coupled filtering). In the loosely coupled integration mode GPS raw
measurements are pre-analyzed in a local KALMAN filter to determine the GPS
positions and velocities in a geographic coordinate system [1-4]. In a second
KALMAN filter these positions are combined with the INS raw measurements to
calculate more reliable positions and velocities, and also orientation parameters and
INS sensor errors.

In closely coupled Kalman filters only one central filter combines the raw data of
both systems. This approach has the advantage also to take into account GPS data also
if less than 4 satellites are visible [1]. A disadvantage of this concept consists in a
rather complicated integration of additional sensors. These techniques based on
Kalman filter integration have a long history in navigation; they have the advantage of
being able to provide position and orientation parameter estimates in real time. Given a
correct stochastic model they calculate optimal solutions based on all past data.

This paper addresses issues of reducing sources of errors and consequently
increases the accuracy of the required measured quantities. To accomplish this, various
approaches has been considered, simulated, experimentally measured and tested. First,
an experimental work has been done in this study for error modeling and
characterization for physical low cost IMU. The sensor data required for estimating the
error coefficients is obtained using the turntable associated with testing facilities and
acquisition system. In order to obtain the proper sensor data, a test procedure for the
turntable is designed. Using the test procedure, a rate test and multi-position test are
carried out. Second, a strap down inertial navigation (SDINS) algorithms has been
carried out and verified using accurately real measurement data. Finally, an integrated
GPS/INS system is developed, verified and tested in a field environment. A vehicle test
was performed under varying operational conditions. Experimental results show an
adequate performance for an in progress project. The performance analysis results are
very relevant to system design and platform trajectory.
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2. Mathematical Modeling and Equations Mechanization
2.1. Optimal Estimator (Kalman Filter) :

Kalman Filter is a recursive algorithm designed to compute corrections to a system
based on external measurements. The corrections are weighted according to the filter
current estimate of the system error statistics. The derivations of the filter equations
require some knowledge of linear algebra and stochastic processes. The filter equations
can be cumbersome from an algebraic point of view. The filter is very powerful in
several aspects, it supports estimations of past, present, and even future states, and it
can do so even when the precise nature of the modeled system is unknown [4-9]. The
Kalman Filter has a general problem of trying to estimate the state nx ℜ∈ of a discrete-
time controlled process that is governed by the linear stochastic difference equation:

111 −−− ++= kkkkkk wuGxx φ (1)
with a measurement mz ℜ∈ that is

kkkk vxHZ += (2)
The random variables kw  and kv  represent the process and measurement noise
respectively. They are assumed to be independent white with normal probability
distributions

),0()( QNwp = (3)
),0()( RNvp = (4)

Where the process noise covariance Q, and measurement noise covariance R matrices
might change with each time step. However, here, they are assumed to be constant.
Let’s define n

kx ℜ∈− as a priori state estimate at step k given the knowledge of the
process prior to step k, and n

kx ℜ∈ as a posteriori state estimate at step k given the
measurement kZ . A priori and a posteriori estimate errors and error covariance are:

[ ]T
kkkkkk eeEPxxe −−−−− =−= , (5)

[ ]T
kkkkkk eeEPxxe =−=− , (6)

The linear combination between a posteriori state estimate kx , a priori state estimate −
kx ,

and a weighted difference between an actual measurement kZ  and measurement
prediction −

kxH is: -
[ ]−− ∗−∗+= kkkkkk xHZKxx (7)

In the equation [ ]−∗− kkk xHZ is called measurement innovation or the residual.
kK matrix is also called as Kalman gain matrix and can be shown as:

[ ] 1−−− +∗∗∗= k
T
kkk

T
kkk RHPHHPK (8)

The Kalman Filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of noisy
measurements.
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As such, the equations for the Kalman Filter fall into two groups: time update
equations and measurement update equations. The time update equations are
responsible for projecting forward (in time) the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate [4].
After each time and measurement update pair, the process is repeated with the previous
a posteriori estimates used to project or predict the new a priori estimates in recursive
nature as shown in Fig. 1.

Time Update ( Prediction )

measurement Update ( Correct )

2- project the error covariance ahead

1- project the stae ahead

3- Update  the error covariance

2- Update  estimate with measurement

1- Compute the Kalman gain

kk PandxforestimatesInitial

kk1k xx ∗φ=−
+

k
T
kkk1k QPP +φ∗∗φ=−

+

[ ] 1

k
T
kkk

T
kkk RHPHHPK −−− +∗∗∗=

[ ]−− ∗−∗+= kkkkkk xHZKxx

[ ] −∗∗−= kkkk PHKIP

Figure (1): KALMAN filter architecture

2.2. The Attitude Dynamics Using Quaternion:
Using quaternion method of transformation [9] as the orientation states is an
improvement over angular representations since quaternion are singularity-free, have
fewer issues with normalization, and trade bulky trigonometric functions with more
convenient polynomial operations. Quaternion models have been used in orientation
Kalman filters; but they have yet to be used widely in Kalman filters for general
navigation purposes [6]. In this work, quaternion method rotates a vector from the n-
frame to the b-frame. This is because the IMU measures are in the b-frame and need to
be rotated into the n-frame.

( )Tb
n qqqqq 3210= (9)

The quaternion should satisfy the following normality condition to represent
orientations to frame.

12
3

2
2

2
1

2
0 =+++ qqqq (10)

The b-frame is attached to the rate gyros, so the gyro signals measure b
ibω  the angular

velocity of the b-frame with respect to the i-frame projection to the b-frame.
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 This can be decomposed into b
ieω  the angular velocities of the e-frame with respect to

the i-frame projection to the b-frame, b
enω  the angular velocities of the n-frame with

respect to the e-frame projection to the b-frame, and b
nbω  the angular velocities of the b-

frame with respect to the n-frame frame projection to the b-frame,.
b
nb

b
en

b
ie

b
ib ωωωω ++= (11)
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the transformation matrix n
bC  are accomplished by using quaternion [5].
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The Euler angles can also be determined from quaternion by the following.
The pitch angle: [ ])(2sin 2031

1 qqqq −−= −θ (14)

The roll angle: 






 +
= −

)cos(
)(2sin 01321

θ
φ

qqqq (15)

The yaw angle: 






 +
= −

)cos(
)(2

sin 03211

θ
ψ

qqqq
(16)

3. Integrated Navigation System
The most commonly used method of integrating GPS and INS is to use GPS position
and velocity measurements to correct errors in the INS. This is generally referred to as
loosely coupled integration. This is because the GPS and INS are treated as individual
systems. This algorithm is also sometimes referred to as decentralized filtering since
two KALMAN filters are used: one to process the GPS measurements, and a second to
perform the integration. This algorithm is commonly used due to its simplicity and ease
of hardware implementation. However, it is clear that for applications where there is a
restricted view of the sky, there is an improvement that can be made by combining the
two systems at the measurement level.
Figure 2 shows that the raw measurements are collected from the IMU and are
converted to position, velocity, and attitude measurements in the desired coordinate
system using the INS algorithms (quaternion algorithm).
The position is then used to form predicted range measurements (corrected for the lever
arm offset from the GPS antenna to the INS) to each of the satellites.
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 These ranges are then differenced with the raw GPS measurements to estimate the INS
errors feeding the integrating filter. The decentralized filtering algorithm is commonly
used to integrate GPS and INS simply.

Figure (2): flowchart of loosely integration algorithm

4. Simulation and Experimental results:
In this section INS only results from the recorded IMU data [10] with quaternion
algorithm that has been carried out in this paper, GPS only data [10], and the GPS/INS
integrated work from KALMAN filter algorithm using loosely integration also carried
out in this work, all are off line tests, and finally the integrated data recorded from an
integrated GPS/INS software (Un available code), all are figured out to compare there
performance (quaternion INS algorithm and KALMAN filter algorithm with the saved
data from a complete integrated navigation system to insure there performance).
The integrated navigation algorithm has been carried out, verified, and tested based on
a typical recorded data for specified trajectory utilizing high resolution measurement
kit (LN200 tactical IMU and Novatel OEM4 GPS integrated using  ready software)
[10]. The condition for recording and analyzing these data is illustrated in the
following:
A land vehicle (car) was used to set a reference trajectory during which an output data
for GPS and IMU units has been saved. The GPS receiver and the IMU unit were fixed
on the car with a lever arm from IMU to GPS in body frame: X=1.72m, Y=0.30m, Z=-
1.49m and with initial conditions set as the following; Roll = +0.5 deg; Pitch = +14.0
deg; Yaw = +31.8 deg; with initial Coordinate: Lat. = 51 5’ 47.10419"; Lon. = -114
21’ 47.08920”; Height = 1182.908; the height includes the antenna height.
 Since both sensors cannot be installed at the same place in the host vehicle, the
position and velocity of the IMU are different from those of the GPS.

+
+

IMU Raw
Data

GPS
Raw

INS
Quaternion
Algorithm

INS Euler
Algorithm

GPS / INS
Kalman
Filter-

Pos., Vel.,

Initial
Conditions

Initial
Conditions
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This is called the lever-arm effect. The lever-arm correction for the position and
velocity can be written as:

bn
b
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IMU
rrr C
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−−−

∆























−
+

+

−=

100

0
cos)(

10

001

ϕ
(18)

bb
nb

n
b

n

GPS

n

IMU
rvv C
−−−

∆Ω−= bb
ib

n
b

bn
b

n
en

n
ie

n

GPS
rrv CC
−−−

∆Ω−∆Ω+Ω+= )( (19)
br

−

∆  is the offset vector of the GPS antenna from the centre of the IMU in the body

frame. The estimated errors in the navigation components are fed back to the algorithm
or fed forward to the output. In the feed forward method, the inertial system operates as
if there was no aiding: it is unaware of the existence of the filter or the external data.
The disadvantage of the feed forward method is that the algorithm can experience
unbounded error growth, which makes unbounded error observations delivered to the
Kalman filter. This causes a problem to the linear filter since only small errors are
allowed due to the linearization process [7].

 (a)     (b)
Figure (3): (a)The feedback algorithm (b)The feed forward algorithm

After the correction of level arm the results are recorded and shown in Figs. 4 - 13. The
IMU output response and the navigation states resulted from the navigation algorithm
using quaternion transformation method and the output data of integration are
presented.
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Figure (4): IMU output response (LN200)
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Figure (9): East velocity    Figure (10): Down velocity

Figure (11): Roll       Figure (12): Pitch
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Figure (13): Yaw
From the previous figures, the navigation algorithm utilizing quaternion transformation
technique is tested. As a result, integration between GPS and INS is carried out while
utilizing Quaternion algorithm and using kalman filter in a loosely coupled integration
scheme. Results of the final path and the integration for 1000 sec. run time are recorded
and presented. Figure (14) shows that trajectories of the vehicle from the ready
software and the proposed integrated navigation system including kalman filter
algorithm are identical.

Figure (14): Latitude and longitude from kalman filter
Now, all algorithms (Quaternion INS model and kalman filter algorithm) in loosely
coupled integration are ready to be used with
the available low cost, poor accuracy IMU
(MEMS ADXL202E) hardware fig. and b, and
a (Mini Max) GPS receiver. Firstly, the
dynamical characterization of the inertial sensor
assemble has been carried out to figure out and
verify crucial dynamical parameters including
(scale factor, bias,…) using a single axes turn
table and the associated data acquisition system
as shown in figure 15.                              Figure (15): IMU (a and b) and GPS (c) kits
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Figure (16): Turn table and control unit
For example, the response for yaw gyroscope, mounted on a turning table in which the
turning rates are pre-programmed, is shown in figure 17. Extensive tests have been
conducted in various planes and positions.

Figure (17): Gyro scale factor test result
Then, a real path is set in Alharam street to Elrmayaa city, the hardware (GPS and
MEMS-based low cost IMU) is used to record the data during the motion of the
vehicle. The proposed integrated navigation system is utilized to provide the navigation
states and navigation parameters in which the results are illustrated in Figs. 18 – 27 as
follows for analysis purpose. In addition, for better illustration for the set path Fig. 28
shows the trajectory from Google earth. The output from GPS only, INS only (Quat-
INS) and the integration from both (GPS/Quat) are evaluated off line. An in progress
work for online algorithm is under way.
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Figure (18): Latitude of MEMS IMU, GPS, and Kalman filter
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Figure (19): Longitude of MEMS IMU, GPS, and Kalman filter
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Figure (24): Height of MEMS IMU, GPS, and Kalman filter
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Figure (21): Zoom in to roll a) time 0-20 sec b) time 200-250 sec

Figure (22): Zoom in to pitch a) time 0-25 sec b) time 200-225 sec

Figure (23): Zoom in to yaw a) time 30-50 sec b) time 125-145 sec
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From figures 21, 22, and 23, it's clear that the kalman filter output is better and
smoother than the output from the INS only algorithm, these output may be improved
if an aided hardware is used like digital compass.
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Figure (25): Velocities (NED) of MEMS IMU, GPS, and Kalman filter
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Figure (27): Latitude and longitude from kalman filter
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Figure (28): The trajectory from Google earth
From Fig. 26, it is clear that there is a great deviation between the trajectory from the
INS only algorithm and the trajectory from GPS and the integration model.
Figures (27) and (28) show the trajectory of the vehicle from the GPS receiver, the
kalman filter integration algorithm and the real trajectory from the Google earth server
respectively.

Figure (29): Zoom in to section (a) Fig. 27
The kalman filter is started with small perturbations then becomes smooth with the
GPS output.
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Figure (30): Zoom in to section (b) Fig. 27
Fig. (30) shows that the kalman filter follows the path during the curvature path.

Figure (31): Zoom in to section (22-c)
Fig. (31) Shows that the kalman filter is still smooth after 120 sec of time running.

Figure (32): Zoom in to section (22-d)
Fig. (32) shows that the kalman filter started to deviate from the path but not
continuously after 200 sec from starting work, this is done due to the rapid changing
and accumulation of MEMS_IMU output errors.
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Figure (33): Zoom in to section (22-e)
Although the low cost IMU hardware accuracy is poor, the integration algorithm is still
able to adequately follow the trajectory path. As a result, higher performance grade
hardware while utilizing the achieved navigation algorithm may result in improving the
overall performance of navigation states and navigation parameters.

5.  Conclusions:
This paper addresses issues of reducing sources of errors and consequently

increases the accuracy of the required measured quantities. To accomplish this, an
experimental work has been done in this study for error modeling and characterization
for physical low cost IMU. The sensor data required for estimating the error
coefficients is obtained using the turntable associated with laboratory testing facilities
and acquisition system. A rate test and multi-position test are carried out. A strap down
inertial navigation (SDINS) algorithms has been carried out and verified using
accurately real measurement data. Finally, an integrated GPS/INS system is developed,
verified and tested in a field environment. A vehicle test was performed under varying
operational conditions. Experimental results show an adequate performance for an in
progress project. The performance analysis results are very relevant to system design
and platform trajectory.
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NOMENCLATURE:
xω : Angler velocity in x axis (body frame

rad/sec)
NF : Acceleration in x axis (navigation frame in

m/sec2)
yω : Angler velocity in y axis (body frame

rad/sec)
EF : Acceleration in y axis (navigation frame in m/sec2)

zω : Angler velocity in z axis (body frame
rad/sec)

DF : Acceleration in z axis (navigation frame in m/sec2)

ϕ : Position latitude in rad
Nv : Velocity in x axis (navigation frame m/sec)

λ : Position longitude in rad Ev : Velocity in y axis (navigation frame m/sec)
h : Position altitude in meter

Dv : Velocity in z axis (navigation frame m/sec)

xa : Acceleration in x axis in body frame in
m/sec2

b
nC : Transformation matrix (navigation to body frame)

Ya : Acceleration in y axis in body frame in
m/sec2

n
bC : Transformation matrix (body to navigation frame)

za : Acceleration in z axis in body frame in
m/sec2

ng : Gravitational acceleration (navigation frame
m/sec2)

φ : Attitude roll in rad eω : Angler velocity of earth in rad/sec
θ : Attitude pitch in rad
ψ : Attitude yaw in rad




