
Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

6th International Conference
on Electrical Engineering

ICEENG 2008

A reconfigurable multi-byte regular-expression matching architecture

By

Tamer Farouk Badran* Hany H. Ahmad** Mohamad Abdel-Gawad ***

Abstract:

String/Regular-Expression Matching is widely used in different applications. Our work
is concerned with high-throughput regular-expression matching in the context of
Intrusion Detection Systems as it is the most computationally intensive part of the
operation. The results, however, should be equally applicable to other domains that
require fast regular-expression matching. The major contribution of this paper is a
reconfigurable architecture that performs regular-expression matching on a multi-byte
per clock cycle basis. We are able to explore the system performance for different byte-
processing rates – from 4 to 64 – by automating the VHDL-generation process and
implementing the resulting circuits on a general-purpose FPGA. Theoretical expressions
for resource usage (cost) as a function of byte-rate and pattern-length are also presented.

Keywords:

String Matching, Regular-Expression Matching, Intrusion Detection, Reconfigurable
Architecture

* Teaching Assistant, Assiut University, Assiut, Egypt
** Lecturer, Assiut University, Assiut, Egypt

*** Professor, Assiut University, Assiut, Egypt

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 2

1. Introduction:

Today's crucial information networks are vulnerable to fast moving attacks by internet
worms and computer viruses. These attacks have infected computers globally, clogged
large computer networks, and degraded corporate productivity; so the need for Intrusion
Detection Systems (IDSes) is urgent. The ever-increasing data rates of current and
future networking standards dictate the need for high throughput matching. For instance,
an already existing standard – the OC768 – requires a data rate in excess of 40Gbps.
Also, in July 2007, the IEEE 802.3 Higher Speed Study Group (HSSG) presented a
project for a new IEEE 802.3ba standard which defines both 40Gbps and 100Gbps data
rates. To cope with such high data rates, dedicated hardware solutions are attractive
since they can naturally exploit the inherent parallelism of the problem. In the particular
case of regular-expression (regex) matching in IDSes, reconfigurability is also required
to accommodate the dynamically changing rule-set of the IDS. So FPGAs are a suitable
platform to implement such systems.

The remainder of this paper is organized as follows: in Section 2 we discuss related
work, in Sections 3 and 4 we present our work and the results, and finally we
summarize the outcome in Section 6.

2. Related Work:

Sidhu and Prasanna [1] presented a detailed structure of the comparators and the circuits
to support all the metacharactes found in regex. In their work, regex is converted to
NFAs and then implemented on FPGA. The matching process is performed on a single-
byte per clock cycle basis. They also automated the generation of the architecture and its
placement and routing on their Self-Reconfigurable Gate Array (SRGA).

Another approach of regex matching presented by Hutchings et. al. is to create a JHDL-
based module generator [2] capable of handling regex operators, based on standard
regex syntax. These circuits are based on the NFA implementation presented in [1] –
matching process is performed on a single-byte per clock cycle basis also – and once
created they can be debugged and verified with the JHDL simulator and design browser.
JHDL emits EDIF net-lists that can be passed to Xilinx place and route software for bit-
stream generation. JHDL provides run-time support for debugging the running hardware
in the context of the original design using the same GUI as the JHDL simulator.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 3

In [3] Cho et. al. presented an architecture that compares the input packets against the
desired pattern at a rate of 4 bytes per clock and took into consideration all the 4 offsets
of the pattern to increase the throughput, but with no support for regex metachatacters.

Clark et. al. [4] increased the rate of [3] to take 4, 8, and 16 bytes per clock on Virtex-2
8000 and 16, 32, and 64 bytes per clock on Virtex-2 Pro 125 and investigated the
throughput, number of characters, and the resource utilization.

3. Our Work

Based on our literature review reported in [5], we started the exploration of high-
throughput sting matching for IDSes by extending the single-byte architecture of Sidhu
and Prasanna [1] to handle multi-byte exact string-matching case while taking care of
possible pattern offsets in a uniform manner. The result of the first step is the
architecture for which a 4-byte (per clock cycle) example is given in Figure (1)1.

S
ha

re
d

D
ec

od
er

a1
b1
c1
d1
e1
f1

a2
b2
c2
d2
e2
f2

a3
b3
c3
d3
e3
f 3

a4
b4
c4
d4
e4
f 4

a1
b2
c3
d4

Q

QSET

C LR

D d4r

a2
b3
c4

Q

Q
SET

C LR

D c4r

a3
b4

Q

QSET

C LR

D b4r

Q

QSET

C LR

D a4ra4

d 4r
e1
f2

m 1

c4r
d 1
e2
f3

m2

b4r

d 2
e3
f4

m3c1

Q

QSET

C LR

D e4r
a4r

c2
d 3
e4

b 1 e4r

f1
m4

m 1
m 2
m 3
m 4

Q

Q
SET

C LR

D
m

Sh
ar

ed
D

ec
od

er
S

ha
re

d
D

ec
od

er
Sh

ar
ed

D
ec

od
er

Figure (1): Structure of 4-bytes per clock matching circuit for the pattern "abcdef"

1 It was later brought to our attention that the same architecture had already been reported in [3].

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 4

The next step was to extend the architecture to support the metacharacters used in regex
(‘?’–zero or one times, ‘*’–zero or more times, ‘+’–one or more times, '.'–match
anything). A 4-byte instance of the new architecture, for matching the regex “a(bcde)+f”,
is shown in Figure (2). Operation of the circuit when attempting to match the input
string “sebcdabcdebcdef” is illustreated in Table (1).

Figure (2): Structure of 4-bytes per clock matching circuit for the pattern "a(bcde)+f"

Table (1): Example of regex matching
Clock Cycle Active Signals
#1 – “sebc” s1 , e2 , b3 , c4è nothing happens
#2 – “dabc” d1 , a2 , b3 , c4è the waiting for ‘d’ (wfd) signal will go high
#3 – “debc” d1 , e2 , b3 , c4è re2 goes high, then ANDed with b3,c4 so wfd goes high
#4 – “def” d1 , e2 , f3è re2 goes high, then ANDed with f3 so m2 and m go high

The third element of the investigation was to study the FPGA resource consumption as a
function of the number of bytes processed per clock cycle (LJ) as well as the length of
the target pattern (LP), are listed in Table (2). To explore the design-space easily and
flexibly, a program that takes as input the target regex and the desired bytes-per-clock
rate, and generates the corresponding Structural VHDL module was developed. The
resulting VHDL was then used to implement the system on target FPGAs using vendor-
supplied synthesis tools.

Sh
ar

ed
D

ec
od

er
Sh

ar
ed

D
ec

od
er

a1
b1
c1
d1
e1
f1

a2
b2
c2
d2
e2
f2

a3
b3
c3
d3
e3
f3

a4
b4
c4
d4
e4
f4

Sh
ar

ed
D

ec
od

er
Sh

ar
ed

D
ec

od
er

a1

b2
c3
d4

Q

QSET

CLR

D wfe

b3
c4

Q

QSET

CLR

D wfd

b4

Q

QSET

CLR

D wfc

Q

QSET

CLR

D wfb

wfe
e1 re1

wfd
d1
e2

re2

wfc

d2
e3

re3c1

Q

QSET

CLR

D
re4r

wfb
c2
d3
e4

b1 re4r

f1
m4

m1
m2
m3
m4

Q

QSET

CLR

D m

re1

a2
re2

a3
re3

a4
re4r

re3
f4

m3

re2
f3

m2

re1
f2

m1

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 5

Table (2): Resources consumption as a function of LJ and LP

Resources 1 byte/clock LJ byte per clock
Shared Decoders 1 LJ

Flip-Flops LP LP
2-input OR Gates* 1 LJ

AND Gates Lp with 2
inputs

(LJ-1) AND Gates:
Gate no. x has min (x+1,LP) inputs

(LP-1) AND Gates:
Gate no. y has min (y+1,LJ+1) inputs

* Needed only if the pattern contain regex metacharacters

4. Implementation Results:

The rates of 4, 8, 16, 32, and 64 bytes per clock cycle were tested on three popular
FPGA platforms2, and for each platform, the effect of increasing the number of bytes
processed per clock cycle on clock rate, throughput, and resource usage was observed.
Table (3) lists implementation results of a synthetic rule-set comparable to the complete
Snort rule-set (which comprises 1400 rules containing from 2 to 107 characters each),
but with no meta-characters included in the rules (i.e. exact pattern matching is
assumed). The rule-set statistics used here are a reproduced version of those presented
by Ioannis Sourdis in [6]. Clock frequency is rounded down to the nearest 5MHz and
Throughput is rounded down to the nearest 0.5 Gbps. This data is included as a baseline
for comparison with previous work.

Table (3): Results for complete rule-set assumed to be exact-patterns

Platform Bytes per
cycle

Clock-
MHz

Throughput-
Gbps Resource Usage

1 165 1 72% of XC3S1600E
4 150 4.5 87% of XC3S1600E

8 135 8.5 185% of XC3S1600E
(2Chips)

16 135 17 467% of XC3S1600E
(5Chips)

32 135 34 1073% of XC3S1600E
(11Chips)

Spartan-
3E

64 130 66.5 3861% of XC3S1600E
(39Chips)

2 Xilinx FPGA platforms – Spartan-3E Speed Grade -4, Virtex-2Pro Speed Grade -7, and Virtex-5 Speed Grade -3.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 6

1 275 2 32% of XCV2P70
4 255 8 39% of XCV2P70
8 235 15 80% of XCV2P70

16 215 27 189% of XCV2P70
(2 Chips)

32 210 53.5 381% of XCV2P70
(4 Chips)

Virtex-
2Pro

64 200 102 880% of XCV2P70
(9 Chips)

1 425 3 31% of XC5VLX110
4 415 13 37% of XC5VLX110
8 355 22.5 64% of XC5VLX110

16 335 42.5 113% of XC5VLX110
(2 Chips)

32 280 71.5 236% of XC5VLX110
(3 Chips)

Virtex-5

64 280 143 531% of XC5VLX110
(6 Chips)

With the assumption that all the rules have regex metacharacters the implementation
results changed to be as listed in Table (4). If the actual Snort rule-set were
implemented, the results will be expected to lie somewhere between those of Table (3)
and Table (4).

Table (4): Results for complete rule-set assumed to be regular-expressions

Platform Bytes per
cycle

Clock-
MHz

Throughput
-Gbps Resource Usage

1 115 1 72% of XC3S1600E
4 110 3.5 99% of XC3S1600E

8 105 6.5 222% of XC3S1600E
(3Chips)

16 100 12.5 561% of XC3S1600E
(6Chips)

32 100 25.5 1302%of XC3S1600E
(14Chips)

Spartan-
3E

64 100 51 4720%of XC3S1600E
(48Chips)

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 7

1 205 1.5 32% of XCV2P70
4 200 6 45% of XCV2P70
8 180 11.5 97% of XCV2P70

16 165 21 227% of XCV2P70
(3 Chips)

32 160 40.5 463% of XCV2P70
(5 Chips)

Virtex-
2Pro

64 155 79 1076% of XCV2P70
(11 Chips)

1 260 2 31% of XC5VLX110
4 260 8 43% of XC5VLX110
8 230 14.5 81% of XC5VLX110

16 225 28.5 149% of XC5VLX110
(2Chips)

32 215 55 313% of XC5VLX110
(4Chips)

Virtex-5

64 215 110 709% of XC5VLX110
(8Chips)

Implementation results show that as the byte-rate increases, the critical-path delay
increases at a much slower rate, leading to considerable throughput gains. For example,
using a Vertix-5 FPGA, a throughput in excess of 110 Gbps is achievable when
processing 64 bytes in parallel, compared to 2 Gbps for the single-byte case; a
remarkable speedup factor of 55. As expected, however, this throughput gain is only
achievable at the expense of increased resource usage. In the previous example, for
instance, the 55 speedup factor was achieved at the expense of 23-fold increase in
resource usage3.

The results of Table (3) and Table (4) for the case of the Virtex-2Pro platform are
plotted in Figure (3) and Figure (4), respectively.

3 See Table (4) for more details.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 8

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Processed bytes per clock cycle

Throu gh put

(Gb ps

)

Platform: Virtex-2 Pro Speed Grade -7

Exact-Patterns Case

Regular-Expressions Case

Figure (3): Effect of byte-rate increase on Throughput

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Processed bytes per clock cycle

Resource Usa ge

(Chi ps

)

Platform: Virtex-2 Pro Speed Grade -7

Exact-Patterns Case

Regular-Expressions Case

Figure (4): Effect of byte-rate increase on Resource Usage

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 9

5. Conclusions and Future Directions:

The focus of this research, so far, has been to design a scalable architecture capable of
coping with the increasing demand for high-throughput pattern matching in network
IDSes, To this end, we believe that the multi-byte architecture presented here is well
posed to meet current and future needs. It is also our view that the additional cost
reflected in increased resource usage is acceptable, and justifiable, to attain the required
performance levels.

We are currently working on our automation tool to complete the path from regular
expression to FPGA configuration bit-stream and bypassing the vendor-supplied,
general-purpose synthesis tool. This will serve two purposes. First, it will allow us to
optimize the resulting layout to better suit the regular structure of the architecture. And
second, it will allow rapid run-time reconfigurable (RTR) of the system when a new rule
is added to the rule-set.

Another direction of future research is to conduct a thorough analysis of the overhead
inflicted due to the use of a general-purpose FPGA platform in the form of non-utilized
resources. It is expected that several optimizations can be made by tailoring the
underlying reconfigurable architecture to suit the application. In other words, we will be
considering the design of Application-Specific Reconfigurable Architectures (ASRAs).

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE091 - 10

References:

[1] R. Sidhu and V. K. Prasanna, Fast Regular Expression Matching Using FPGAs,
IEEE Symposium on Field-Programmable Custom Computing Machines, P. 227-
238, 2001

[2] B. L. Hutchings, R. Franklin and D. Carver, Assisting Network Intrusion
Detection with Reconfigurable Hardware, IEEE Symposium on Field-
Programmable Custom Computing Machines, P. 111-120, 2002

[3] Y. H. Cho, S. Navab, W.H. Mangione-Smith, Specialized Hardware for Deep
Network Packet Filtering, International Conference on Field-Programmable Logic
and Applications, P. 452-461, 2002

[4] Christopher R. Clark and David E. Schimmel, Scalable Pattern Matching for
High Speed Networks, IEEE Symposium on Field-Programmable Custom
Computing Machines, P. 249-257, 2004.

[5] Tamer F. Badran, Hany H. Ahmad and Mohamad Abdelgawad, Network Intrusion
Detection: A Review, Assiut University Conference on Engineering between
theory and Practice Conference, P. 172-178, 2007

[6] Ioannis Sourdis, Efficient and High-Speed FPGA-based String Matching for
Packet Inspection, M.Sc. Thesis, Technical University Of Crete, Electronic And
Computer Engineering Department, 2004

Nomenclature:

LJ … The number of bytes processed per clock cycle
LP … The length of the target pattern

