
Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

6th International Conference
on Electrical Engineering

ICEENG 2008

FPGA Implementation of a Direct Digital Synthesizer for Carrier Phase
Synchronizer in Software Radio Receiver

By

Sherif Welsen Shaker* Salwa Hussien El Ramly** Khaled Ali Shehata***

Abstract:

More recently there has been a lot of discussion about the emergence of so-called
Software Defined Radio (SDR). Due to its high reconfigurability, Field Programmable
Gate Array technology (FPGA) can be viewed as an attractive option for implementing
many of the tasks performed in SDR. Synchronization is one of the most complicated
signal processing performed in SDR. This paper proposes an all-digital QPSK carrier
phase synchronizer that is based on Phase-Locked Loop. The paper proposes the
implementation of one of the basic block of the synchronizer which is the Numerically
Controlled Oscillator (NCO) based Direct Digital Synthesizer (DDS) on Altera
EPF10K70RC240-4 FPGA chip. A comparison between the simulation results and
Hardware test of the DDS has been made. The used tools are FPGA Advantage Pro
provided by Mentor Graphics and Quartus synthesizer provided by Altera.

Keywords:

Software defined radio, phase synchronization, FPGA and DDS.

* Modern Academy for Engineering and Technology, Cairo, Egypt.
** College of Engineering, Ain Shams University, Cairo, Egypt.

*** Arab Academy for Engineering and Technology, Cairo, Egypt.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 2

1. Introduction:

When multiple technologies align in time to make it possible things that were only
dreamed, a certain convergence occurs. A great convergence is occurring in radio
communications through Digital Signal Processing (DSP) software to perform most
radio functions at performance levels previously considered unattainable. Recently,
there have been many discussions about the emergence of so-called Software Defined
Radio (SDR) [1]. SDR is characterized by its flexibility so that modifying or replacing
software programs can completely change its functionality. They provide a quick and
easy way to upgrade into new modes and improve the performance without the need to
replace any hardware. In the early 1990’s Field Programmable Gate Arrays (FPGAs)
have became a considerable option in digital communication hardware where they were
often applied as a configurable logic cells to support memory controller tasks, complex
state machines and bus interfacing [2]. Carrier phase synchronization may be considered
as one of the most challenging signal-processing tasks performed in SDR. This paper
proposes a technique for developing and modeling all-digital QPSK carrier phase
synchronization and the implementation of its Direct Digital Synthesizer (DDS) module
on FPGA chip.

2. QPSK Carrier Phase Synchronization:

The synchronizer proposed in this paper is based on the discrete-time PLL. The
structure of a discrete-time PLL is essentially the same as that of continuous-time PLL.
Continuous-time PLLs have three basic components: a phase detector voltage-controlled
oscillator (VCO) and a loop filter [3]. The phase detector measures the difference
between phases of the local oscillator and input carrier. This signal is fed to a loop filter
that governs the response of the PLL to variations in the error signal. The loop filter is
designed to track changes in the error signal. The discrete-time that mimics the
continuous-time PLL is illustrated in figure 1. The loop filter uses a simple filter with a
pole at z = 1. The discrete-time PLL uses DDS in place of the VCO [4]. A single-pole
filter is used to integrate the DDS input to calculate the instantaneous phase. As
illustrated in figure 2, and for the decision-directed QPSK carrier phase synchronizer,
the in-phase and quadrature matched filter outputs, x(kTs) and y(kTs), are rotated by -
φ’(k), to align the signal space projection (x’(kTs), y’(kTs)) with the constellation points
[5].
Computing the phase error is understood in geometric terms as illustrated in figure 3.
The phase angles of the de-rotated matched filter output and that of the nearest
constellation point are given by:

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 3









= −

)('
)('

tan)(1

s

s
r kTx

kTy
kφ









= −

)(
)(tan)(

0

11

s

s
d kTa

kTakφ (1)

The phase error for the k-th symbol is thus:
e(k) = φr(k) - φd(k) (2)

(3)









−








= −−

)}('sgn{
)}('sgn{tan

)('
)('tan)(11

kx
ky

kTx
kTyke

s

s (4)

Phase
detector

cos (Ω0 n+φ’(n))

cos (Ω0 n+φ(n))

v(n)
K2 z-1

K1

K0z-1cos

Ω0
DDS

Figure (1:) Second order discrete-time PLL with proportional plus integrator.

The phase error e(k) is extracted from the point (x’(kTs), y’(kTs)) by computing the
residual phase difference between (x’(kTs), y’(kTs)) and the nearest constellation point
(â0(k), â1(k)) where for QPSK â0(k) = sgn{ x’(kTs)} and â1(k) = sgn{ y’(kTs)}.









−








= −−

)(
)(tan

)('
)('tan

0

111

s

s

s

s

kTa
kTa

kTx
kTy

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 4

x(nT)

y(nT)

x(kTs)

y(kTs)

Matched
filter

Matched
filter

Free-
running osc.

cos (Ω0 n)

-sin (Ω0 n)

Sampled
IF signal

R
otation

D
ecision

â0(k)

â1(k)

DDS F(z)

cosφ‘(k)

-sinφ‘(k)

x’(kTs)

y’(kTs)

+ -

e(k)

Figure (2): Carrier phase synchronization using post-matched filter de-rotation
operation

Quadrature

In-phase

(x’(kTs),y’(kTs))

(â0(kTs),â 1(kTs))

φr(k)

φd(k)

Figure (3): Geometric representation of the phase error computation in a QPSK carrier
PLL

The phase detector requires two four-quadrant arctangent operations and a subtraction.
A reduced complexity phase detector can be obtained by using the sine of the phase
error in place of the phase error [5].

sin (φr(k) – φd(k)) = sin (φr(k)) cos (φd(k)) – cos (φr(k)) sin φd(k)) (5)

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 5

)()()()(')('

)()(')()('
2

1
2

00
22

10

kakakakTykTx

kakTxkakTy

ss

ss

++

−
= (6)

3. NCO-based Direct Digital Synthesizer:

Direct digital synthesizers (DDS) based on Numerically Controlled Oscillators (NCO),
are important components in many digital communication systems. Quadrature
synthesizers are used for constructing digital down and up converters, demodulators,
and implementing various types of modulation schemes, including PSK (Phase Shift
Keying), FSK (Frequency Shift Keying), and MSK (Minimum Shift Keying). A
common method for digitally generating a complex or real valued sinusoid employs a
look-up table scheme. The look-up table stores samples of a sinusoid. A digital
integrator is used to generate a suitable phase argument that is mapped by the look-up
table to the desired output waveform [6].
A DDS based on an NCO takes a fixed frequency reference clock and generates a digital
waveform of variable frequency. An NCO-based frequency synthesizer, as shown in
figure 4, consists of the following pieces. The first piece is the NCO, which is just a big
accumulator, which we describe as holding the “phase” of the output signal. As the
NCO accumulator changes, the values represent a linear phase ramp. The second piece
the quantizer, which is simply a slicer that accepts the high precision phase angle and
generates a lower precision representation of the angle. This value is presented to the
third piece which is the mapping Read Only Memory (ROM) that maps the most
significant bits (MSBs) of the NCO into a sinusoid. In other words, the linear phase
from the NCO is converted to a series of values representing a sinusoidal waveform.

4. FPGA Implementation of the NCO-based DDS:

The structure of the design is shown in figure 4. The design consists of the NCO, “phase
accumulator” holding the phase of the output signal followed by a mapping ROM. The
NCO itself is an 18-bit adder followed by a register. One of the 18-bit inputs of the
adder is the phase increment input value of the DDS; the other input is a feedback of the

To avoid the division suggested by the last equation, the numerator alone can be used as
the error signal while the denominator terms are absorbed in to the phase detector gain.
Thus e(k) = y’(kTs) a0(k) – x’(kTs) a1(k).

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 6

18-bit register. One other adder is used as a phase offset register for applying another
18-bit constant phase offset input to the phase slope computed in the phase accumulator
register [7]. A 1K-byte memory representing the programmable memory is made so that
the ROM can map the most 10 significant bits (MSBs) of the NCO output from the
quantizer into a cosine. In other words, the linear phase from the NCO is converted to a
series of values representing a cosine waveform. The ROM has 10 address lines input
carrying the truncated phase address used for addressing the 1024 locations and 8 data
output lines. The quantizer, accepts the high precision phase angle (18-bits) and
generates a lower precision phase angle of size (10-bits). This value is represented to the
address port of the mapping ROM [8]. A VHDL code has been written for describing
each of the above-mentioned blocks using structural architecture.

DDS
O/P

clock

offset

DDS
I/P

Adder
Reg. QAdder 1K-Byte

ROM

18

18 18

18 18 10 8

QuantizerNCO

Figure (4): Structure of NCO-based DDS with 18-bit phase accumulator

FPGA Advantage Pro. tool provided by Mentor Graphics has been used for the VHDL
design description. A series of Full Adders (FAs) is used for representing each of the
18-bit adders. A data flow VHDL architecture is used for describing a look-up table
which stores uniformly spaced samples of a cosine wave representing the mapping
ROM. These samples represent a signal cycle of a length equal 210 prototype complex
cosine and correspond to specific values of the cosine’s argument = n (2×π / 210), where
n is the time series sample index. The number of words in the ROM determines the
phase quantization error while the number of bits in each word determines the amplitude
quantization error.
Figure 5 provides the simulation of the NCO-based DDS. The ModelSim simulator
provided by Mentor Graphics has been used for that purpose. The DDS input offset
value is set at fixed value equal 1/16. Simulator is run and the DDS accumulator input
“phase increment word” has been given different values. The DDS output waveform is
plotted in an analog view setting the height at suitable value. The DDS output waveform
shows how the DDS use the fixed frequency clock to generate a digital waveform of
variable frequency and phase by changing the input phase increment word.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 7

Quartus simulator provided by Altera has been used for the synthesization purposes to
map the design to the FPGA target technology. The Design of the NCO-based DDS has
been downloaded onto the ALTERA EPF10K70RC240-4 FPGA chip after pin
assignment for all the inputs and outputs. The download process has been done using
the ByteBlaster II download cable, which is a hardware interface to a standard parallel
port.

Figure (5): NCO-based DDS waveform output

5. Hardware testing and verification:

In the testing phase the logic analyzer has been used to plot the output waveforms for
the downloaded design on the FPGA chip. Figure 6 shows the waveforms from the logic
analyzer while figure 7 shows the waveforms from the ModelSim simulator, it is clear
that both waveforms are identical.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 8

Figure (6): Complete period waveforms from the logic analyzer

Figure (7): Complete period waveforms from the logic analyzer

6. Conclusions:

paper has demonstrated a practical approach for designing and implementation of a
carrier phase synchronization module on FPGA chip. An all-digital, discrete time model
of a QPSK carrier phase synchronizer has been proposed that uses an approach performs
the phase compensation at the output of the matched filter. The Implementation of the
DDS which is one of the basic building blocks in the proposed model has been

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE182 - 9

implemented on Altera EPF10K70RC240-4 FPGA chip. The design took about
96/3,744 (2%) of the total chip logic elements. The maximum operating frequency is
45MHz and it could be increased by using sophisticated FPGA families. Hardware
testing and verification showed identical results with those from the simulation.

References:

[1] Joseph Mitola III, “Software Radios”, IEEE Communications Magazine, volume:
33 no. 5, pp.24-25, May 1995.

[2] M. Cummings and S. Huruyama, “FPGA in the Software Radio”, IEEE
Communication Magazine, volume: 37, no. 2, pp. 108-112, February 1999.

[3] B. Sklar, Digital communication fundamentals and applications, Prentice Hall,
Englenwood Cliffs, New Jersey, (2000).

[4] Joseph F. Gravey and Daniel Babitch, “An exact spectrum analysis of a number
controlled oscillator based synthesizers”, IEEE fourty fourth annual symposium
on frequency control 1990.

[5] M. Rice, C. Dick and F. Harris, “Maximum Likelihood Carrier Synchronization in
FPGA-based Software Defined Radios”, ICASSP-2001, International Conference
on Acoustics, Speech and Signal Processing, Salt Lake City, Utah, May 7-11,
2001.

[6] Jouko Vankka, “Methods of mapping from phase to sin amplitude in direct digital
synthesis”, IEEE trans. on ultrasonic, feroelectronics and frequency control,
volume: 2, pp. 526-534, March 1997.

[7] Xilinx core generator system, DDS v5.0
<http://www.xilinx.com/products/logicore/coregen/index.htm>.

[8] Atalla Ibrahim Hashad, Khaled Ali Shehata, Mohamed Abu El-Dahab, and Sherif
WelsenShaker, “FPGA Implementation of Direct Digital Synthesizer for Software
Radio Receiver”, First Workshop on VLSI Technology and EDA Tools, Arab
Academy for Science and Technology, College of Engineering and Technology,
Cairo, Egypt, December, 2005.

http://www.xilinx.com/products/logicore/coregen/index.htm

