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Abstract:

The problem of reactive power dispatch (RPD) is to allocate reactive power
generation so as to minimize the real power transmission losses and keep all voltage
within the limits, while satisfying a number of equality and inequality constraints. This
paper presents a new methodology for solving RPD. This methodology is consists of
two phases. The first one employs the genetic algorithm (GA) to obtain a feasible
solution subject to desired load convergence, while the other phase employs efficient
GA to obtain the optimal solution. Also, some major improvements are added to the
traditional genetic algorithm in order to improve the convergence and to find a better
solution. Extensive testing of the proposed algorithm is done on standard IEEE-30 bus
system and the results have been compared to those reported in the literature. The
comparison demonstrates the superiority of the proposed approach and confirms its
potential to solve the RPD problem.
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1. Introduction

Voltage stability condition is a crucial aspect in the power system operation and
planning. The stressed condition in a power system caused by reactive power loading
has made the system operating close to its stability limit while reducing the voltage on a
particular load bus. Hence some measures should be taken in order to improve the
voltage stability condition in the electric power system. Reactive Power Planning
includes the reactive power dispatch, capacitor placement on the load bus to improve
local voltage profile in the radial system.

A number of techniques ranging from classical techniques like gradient-based
optimization algorithms to various mathematical programming techniques have been
applied to solve this problem [4-10,15,16,19]. In most of these approaches the problem
is linearised and then linear programming is used to solve the resulting optimization
problem. This approximation is necessitated by the fact that these techniques have
severe limitations in handling non-linear, discontinuous functions and constraints, and
functions having multiple local minima, as is the case with RPD. The enhanced
modeling and search power of the evolutionary algorithms (EA) developed recently has
encouraged their application to the RPD problem [11-14,22,23]. EA include
evolutionary programming (EP), genetic algorithms (GA) and evolutionary strategies
(ES) [18].

An application of GA for the RPD problem is reported in [11]. The method
decomposes the system into a number of sub-systems and employs interbreeding
between the sub-systems to generate new solutions. All the controller states, including
those with a continuous nature, are discretized and represented as integer values.
Another approach based on a modified simple genetic algorithm is reported in [13]. The
population selection and reproduction uses Benders’ cut in the decomposed system and
successive linear programming is used to solve the operational optimization sub-
problems. An EP approach for solving RPD is presented in [14]. The technique uses a
floating point representation for control variables, thus avoiding the approximation
introduced in binary representation of controllers in GA based approaches. An inner
loop is used for function minimization without any consideration for constraints.
Constraint satisfaction is carried out in an outer loop. Non-feasible solutions in the outer
loop are rejected by attaching a penalty to their fitness values.  A hybrid approach for
solving RPD is presented in [3]. The method is based on evolutionary strategy (ES) i.e.
mutation is the dominant search operator supported by crossover and a local
improvement heuristic.

This paper proposes a new  methodology for solving RPD. This methodology is
divided into two phases. The first one employs the genetic algorithm (GA) to obtain a
feasible solution subject to desired load convergence, while the other part employs GA
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to obtain the optimal solution. The standard IEEE 30-bus 6-genrator test system then
used to verify the validity of the proposed approach.

This paper is organized as follows; problem formulation is reviewed in section 2.
Section 3 gives out the mechanism of Genetic algorithms(GAs). The proposed approach
is presented in section 4. Implementation of the proposed approach are discussed in
section 5. Conclusion follows in section 6.

2. Problem Formulation

The problem of reactive power dispatch (RPD)[2,15] is to allocate reactive power
generation so as to minimize the real power transmission losses and keep all the
voltages within the limits, while satisfying a number of equality and inequality
constraints including the power flow equations, upper and lower voltage limits and
capacity restrictions in various reactive power sources, generators and shunt capacitor
banks. Mathematically, the problem can be stated as
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Thus, RPD is a complex combinatorial optimization problem involving non-linear
functions having multiple local minima and non-linear and discontinuous constraints.

3. Genetic Algorithm (GA)

      GA, invented by Holland [17] in the early 1970s, as a stochastic global search
method that mimics the metaphor of natural biological evaluation. GAs operates on a
population of candidate solutions encoded to finite bit string called chromosome. In
order to obtain optimality, each chromosome exchanges information by using operators
borrowed from natural genetic to produce the better solution.  Figure1 shows Outline of
GAs for optimization problems. The  GAs differ from other optimization and search
procedures in four ways [1,20] :

(1) GAs work with a coding of the parameter set, not the parameters themselves.
Therefore GAs can easily handle the integer or discrete variables.

(2) GAs search from a population of points, not a single point. Therefore GAs can
provide a globally optimal solutions.

(3) GAs use only objective function information, not derivatives or other auxiliary
knowledge. Therefore GAs can deal with the non-smooth, non-continuous and non-
differentiable functions which are actually existed in a practical optimization
problem.

Nbus Number of busbars
NI Number of transmission lines
Ng Number of generator
Nt Number of transformers
Ncap Number of shunt capacitors

iV Voltage magnitude at ith bus
iδ Voltage angle at ith bus
ijδ i jδ δ−

jkr Series resistance connecting buses j and k
,gi giP Q Real and reactive power generation at ith bus
,Di DiP Q Real and reactive power load at ith bus

ij ij ij ijY G jBθ∠ = + ijth element of bus admittance matrix
 min max,gi giQ Q Reactive power limits of ith generator
iQC Reactive power generated by ith shunt capacitor bank

 min max,i iQC QC Reactive power limits of ith shunt capacitor bank
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(4) GAs use probabilistic transition rules, not deterministic rules

Fig.1:Outline of GAs for optimization problems

4. The Proposed Approach

In this section we present a novel optimization algorithm to solve the RPD problem
formulated in the previous section. The solution is based on concept of co-evolution and
repair algorithm for handling nonlinear constraints. The algorithm  is consists of  two
phases. The first phase are: finding an initial feasible point by minimizing a function
that measures the maximum violation of the constraints (Load flow equations), while
the second phase employs efficient co-evolutionary algorithm for solving the resulting
nonlinear programming problem (NLP), which combines concept of co-evolution,
repairing procedure and elitist strategy.

4.1. Solution Representation
The algorithm uses a floating point representation for potential solutions. Each

generation contain both feasible and infeasible individuals and we distinguish between
them using flag pointer assigned to each individual

4.2. Initialization Stage

The population vectors in the first generation are initialized randomly satisfying the
search space S  (the lower and upper bounds), while elitist individual is initialized by
zero. The algorithm needs initial system precisionε , which enable the algorithm to
initially locating an initial feasible point (reference point) that satisfying all constraint
with the initial system precision. Also, for every generation the algorithm searches for
updated reference point, updated reference point represents the individual with the
minimum violation.

4.3. Repairing Infeasible Individuals:
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The idea of this technique is to separate any feasible individuals in a population from
those that are infeasible by repairing infeasible individuals.  This approach co-evolves
the population of infeasible individuals until they become feasible. New feasible
individuals (z) are generated on a segment defined by two points feasible individual
(i.e., initial reference point ∈tξ F ) and infeasible individuals ( tω ), But the segment may
be extended equally on both sides determined by a user specified parameter µ [19,20].
Thus, a new feasible individual is expressed as:

1 2. (1 ) .  ,      (1 ) . .= + − = − +t t t tz zγ ω γ ζ γ ω γ ζ

Where (1 2 )γ µ δ µ= + −  and [0,1]δ ∈ is a random generated number. Figure 2 gives
schematic view of possible sampling region for the generated individuals.

Fig. 2. Possible sampling region

4.4.  Elitist strategy.

Using  an elitist strategy to produce a faster convergence of the algorithm to the
optimal solution of the problem. The elitist individual represents the more fit individual
of the population. The use of elitist individual guarantees that the best fitness individual
never increase (Minimization problem) from one generation to the next .

 4.5. Evolution process stage:

To reduce the violations of the constraints in phase-I to an acceptable level (desired
precision *ε ), further optimization is necessary. This involves minimizing a function that
measures the maximum violation of the constraints. These minimizations can be done
using ∞l norm as objective function to evaluate fitness for each individual, where the
distance from the system precision ε  to desired precision *ε  should be minimized.

( )* *
i ii

m in  = m in  m a x -
∞

− i iε ε ε ε

The algorithm applies tournament selection procedure/roulette wheel selection to
construct the new population.
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4.6. Stopping Rule:

The  algorithm is terminated for either one of the following conditions is satisfied:
• The maximum number of generations is achieved.
• When the genotypes (the genotypes structures) of the population of individuals

converges, convergence of the genotype structure occur when all bit positions in all
strings are identical, in this case, crossover will have no further effect.

4.7. Proposed Approach For RPD

In solving the RPD, two phases of the algorithm need to be identified, phase-I
implements GA to find an initial feasible point, while phase-II employs efficient co-
evolutionary algorithm for solving the resulting NLP. Figure 3 describes the main steps
of the proposed algorithm.

Algorithm Procedure

Begin
Input 2*NbusRε ∈  (initial system precision), * 2*NbusRε ∈  ( desired system
precision)
Population initialization:
Get a feasible point( initial reference point ) 0=tξ ;
PHASE I
While ( *>ε ε  )do
Begin
                       Select tP  from 1−tP ;
                         Keep the best;
                         Perform  recombination tP ;
                       Repair population;
                       Check (Stopping criteria) ;
                       Elitist;
End
Get a feasible point( initial reference point ) tξ ;
PHASE II

T=0;
   Population initialization:
Begin
          repair population;
          Keep the best;
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          While ( t< max_gen )do
          Begin
        T=T+1;
        Select p(t) from p(t-1);
        Perform  recombination p(t);
                                   Repair population;
                                   Stop if convergence;
         Elitist;
                        End
End
End

Fig. 3. The structure of  optimization system

5. Implementation Of The Proposed Approach
System Data

The described methodology is applied to the standard IEEE 30-bus 6-generator test
system to investigate the effectiveness of the proposed approach. The single-line
diagram of this system is shown in Figure 4 and the detailed data for this system are
given in [24]. The techniques used in this study were developed and implemented on
2.7-MHz PC using MATLAB environment. Table1 lists the parameter setting used in
this study.

      Table 1 : GA parameters
Population size (N) 150
No. of Generation 120
Crossover probability 0.95
Mutation probability 0.03
Selection operator Tournament / Roulette

Wheel
Crossover operator BLX-
Mutation operator Polynomial mutation
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Fig. 4. Single line diagram of IEEE 30-bus 6-generator test system
  Results And Discussions

After running the load flow analysis from a flat voltage start, the generated power and
network power loss are obtained as follows

2.893857 p.u.

0.980199 p.u.
0.059879 p.u.
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Figure 5 shows the convergence curve for  120 generation of the proposed approach

Fig.5. convergence of cost with 120 generations
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Figure 6-7  summarizes the results of the optimal controller settings  (bus voltage
and reactive power sources) as obtained by the proposed approach.

Fig. 6. Optimal setting of bus voltage
obtained by the proposed method.

Fig. 7. Optimal setting reactive power
resources obtained by the proposed

method.

Table 2 summarizes the results of the optimal controller settings as obtained by
different methods given in [3] and limit violations in load bus voltages (Vviolation) and
generator reactive power outputs (Qviolation) caused by these methods. These results
show that maximum saving is obtained by the proposed approach. At the same time, this
method succeeds in keeping the dependent variables within their limits.

As hardware and the software environments affect the computational time
significantly, it is not possible to compare the computational time requirements of
different methods unless all the methods are programmed using the same environment
and run on the same hardware. However, repeated load flow executions are the main
time consuming computations in all these
methods. Therefore, the total number iterations (generation) is a reasonable basis for
comparing the computational performance. The proposed method requires considerably
less number of iterations and is, therefore, faster than the other methods.

Table 2. Comparison of optimal transmission loss for different methods
Method GP∑ LP SaveP % SaveP violationV violationQ

CGA[3] 2.88380 0.04980 0.01008 16.84 Nil Nil
AGA[3] 2.88326 0.04926 0.01062 17.74 Nil Nil
EP1[3] 2.88362 0.04963 0.01025 17.12 Present Nil
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EP2[3] 2.88414 0.05015 0.00972 16.23 Present Nil
Broyden [3] 2.89135 0.05736 0.00252 04.21 Nil Nil
HES [3] 2.88270 0.04870 0.01115 18.63 Nil Nil
Proposed
Approach

2.85910 0.02510 0.03478 58.08 Nil Nil

5. Conclusions

The problem of reactive power dispatch is to allocate reactive power generation so as
to minimize the real power transmission losses and keep all voltage within the limits,
while satisfying a number of equality and inequality constraints. This paper presents a
new  methodology for solving RPD. This methodology is consists of two-phases. The
first one employs the genetic algorithm (GA) to obtain a feasible solution subject to
desired load convergence, while the other phase employs efficient GA to obtain the
optimal solution. The standard IEEE 30-bus 6-genrator test system then used to verify
the validity of the proposed approach. The result confirms the proposed approach
potential to solve the RPD problem. The main features of the proposed algorithm could
be summarized as follows:

a) The proposed technique has been effectively applied to solve the RPD.
b) Allowing a decision maker to control the precision of load flow equations by

defining desired system precision * 2*ε ∈ NbusR  values.
c) The proposed approach is suitable to complex problems, where the feasible

region F  is very small with respect to the search space S  (i.e., <<
F
S

).
d) Low  computational time where, the computational time grows with the number

of iterations
e) Empirical results show that our approach is very efficient against other recent

approaches for solving RPD.
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