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Abstract:

Steady state voltage stability analysis is effectively used to determine a stability
margin that shows how close the current operating point of a power system to the
voltage collapse point. The energy function technique represents a powerful method to
assess voltage stability of multi-machine power systems. The sparse network
formulation of this method retains the original structure of the system network and
avoids network reduction. This permits the system loads to be modeled as they exist in
practical life. Neglecting these models may lead to misleading results; e.g. the system
appears to be stable while it is actually unstable. This paper investigates this serious
problem and shows the significant effect of load modeling on power system voltage
stability. A closed form expression of the energy function is obtained. The proposed
technique is applied to Ontario-Hydro real power system (Canada).
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1. Introduction:

Voltage stability is a subset of the overall power system stability. A power system
is said to be voltage stable if (at a given operating state) is subjected to a given
disturbance, the voltage near the loads approaches a post-disturbance equilibrium point.
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On the other hand, a power system is said to have a voltage collapse, if the equilibrium
voltage after the disturbance is found to be below acceptable limits. In recent years,
voltage instability has been responsible for several major network collapses [1]. As a
consequence, voltage control and stability problems are now receiving special attention
in most systems. Several factors contribute to this voltage collapse [2]; stressed power
systems, inadequate reactive power resources due to excitation system limits, and also,
load characteristics at low voltage are crucial and differ from those at normal values.
Therefore, maintaining an adequate margin from voltage instability limits is a major
concern because many utilities are loading their bulk transmission networks to their
maximum possible capability without increasing transmission capability. Accordingly,
an accurate, easily computable indicator of the proximity of the system to voltage
collapse is needed to take the most effective preventive control actions [3].

Several approaches have been developed for power system voltage stability
assessment. Static voltage stability indices have been obtained based on singular value
decomposition of the power flow Jacobian matrix together with the singular vectors [4].
A voltage proximity index, based on the voltage phasor values, has been proposed in
[5,6]. A performance index that provides a direct relationship between its value and the
amount of load demand that the system can withstand before collapse has been proposed
in [7]. Usefulness and limitations of bifurcation theory in network studies and operation,
particularly in voltage stability related issues have been presented in [8-10].

The proximity of a power system to the voltage collapse point has been evaluated
by Eigenvalue-Eigenvector analysis of load flow Jacobian matrix of the system [11,12].
The relationship between multiple load flow solutions and voltage instability has been
discussed in [13]. The values of the total active and reactive power losses of a power
system have been used as a good indicator for power system voltage stability [14].
Artificial Neural Networks (ANN) has been, also, used in voltage stability assessment
problem [15-17].

The energy function technique represents a powerful method to determine both the
transient stability [18,19] and voltage stability of multi-machine power systems [20,21].
The sparse network formulation of this method retains the original structure of the
system network and avoids network reduction [22]. This permits the system loads to be
modeled as they exist in practical life. Neglecting these models may lead to misleading
results; e.g. the system appears to be stable while it is actually unstable. The serious
effect of load modeling on transient stability of multi-machine power systems has been
discussed in [23] and [24].

This paper investigates this serious problem and shows the significant effect of load
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modeling on power system voltage stability. A closed form expression of the energy
function including load modeling effect is obtained. The proposed technique is applied
to Ontario-Hydro (55-bus) real power system (Canada).

2. Current Energy Function Technique:

In transient stability analysis, the energy function is known as Transient Energy
Function (TEF). The calculation of the TEF depends mainly on determining the post-
fault Stable Equilibrium Point (SEP) and the Unstable Equilibrium Point (UEP) of
minimum energy [19]. In voltage stability assessment of multi-machine power systems,
the energy function technique is a vector integration of both active and reactive power
mismatch equations with integration limits of the high and low voltage power flow
solutions (HVS and LVS). The high and low voltage power flow solutions may be,
physically, explained by considering the two-bus system with lossless transmission line
shown in Fig. (1) [25].

Figure (1): Two-bus system.

Fig. (2) shows a plot of  - V (voltage angle and magnitude) relations for different
values of active and reactive load powers (P and Q) with a transmission line susceptance
B =10.0 p.u. The constant “P” and constant “Q” curves have typically two intersections,
each corresponding to a power flow solution. One of them is referred as HVS (e.g.
points A and C) and the other is referred as LVS (e.g. points D and B). In a case where
the two curves are tangent to each other (HVS and LVS are the same) we get the
collapse point. The energy function that represents the height of the potential barrier
between the HVS and LVS is defined as [25]:

G
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Figure (2): HVS and LVS points for the Two-bus system.
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Accordingly, a generalized energy function, which is devoted for constant power
load model, has been formulated for voltage stability assessment of multi-machine
power systems [22]. It has the following final form:
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The Left-Hand-Side (LHS) of the load flow equations which can be expressed (for n-
bus system) in polar form as:
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Equation (2) gives the Energy Margin (EM) – the voltage stability index - of a
multi-machine power system considering all system parameters. As explained in [22],
Equations (3) and (4) give the required HVS and LVS at a load power. To get the
voltage collapse, the load power is gradually increasing at a specified bus “i” by a
certain step while keeping the loads at all other buses fixed. At each step, the load flow
calculations are performed to obtain both the HVS and LVS. We keep increasing the
loads till the point of voltage collapse is reached and any further increase in load will
lead to system failure.

3. Proposed Energy Function with Load Modeling:

In the current application of energy function technique [22], the system loads, the
LHS of Equations (3) and (4), are assumed constant. The proposed composite load
model consists of constant power, constant current and constant impedance loads. The
constant power load (CPL) absorbs more current from the system at low voltage
conditions and vice versa. The constant impedance load (CIL) varies as the square of
voltage magnitude and, accordingly, absorbs less power, compared to constant power
load, at lower voltage. Constant current load (CCL) is directly proportional to the
voltage magnitude and it represents an intermediate condition between the previous two
types. Therefore, the proposed composite load model, that is more realistic as
compared with that currently adopted, can be represented as:

PL = P + PI + PZ = P + CPI * V + CPZ * V2 (5-a)

QL = Q + QI + QZ = Q + CQI * V + CQZ * V2                       (5-b)

where: P and Q are the active and reactive constant power load component.
PI and QI are the active and reactive constant current load component.
PZ and QZ are the active and reactive constant impedance load component.
CPI and CQI are the constants of proportionality for the constant current load.
CPZ and CQZ are the constants of proportionality for the constant impedance
load.

The constant impedance load component at each bus can be added to the diagonal
elements of the bus admittance matrix, therefore, Equations (5-a) and (5-b) can be
written as:
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where Yii  includes the shunt admittance connected at bus i and the constant impedance
load at that bus. Then, writing the constraint functions as:
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Recalling Equation (1), the energy function expression has three terms. The 1st

term, denoted by I1, will lead to:

I1 =  0.5   Mg w 2                                                                             (8)

The second term of Equation (1), denoted by I2, is given by:
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Performing the required mathematical manipulation, we get:
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where : m = (Vo – V) / ( o – )

The third term of Equation (1), denoted by I3, is given by:
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Performing the required mathematical manipulation, we get:
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Collecting the previous terms I1, I2 and I3, we get:
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Taking into considerations the steady state conditions (w=0), the energy function

for a multi-machine power system considering all parameters will have the closed form
given by Equation (12). The energy function of Equation (12) gives Energy Margin
(EM) – the voltage stability index - at any loading conditions.
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3. APPLICATION RESULTS:

The voltage collapse point is determined as the point at which the energy margin
reaches zero. In the following applications, the load at each bus will be considered as a
composite load that described by Equation (5). A gradual increase in active and reactive
load power at one load bus only is implemented keeping the power factor constant at
that bus.

A computer program is implemented for general application to large-scale power
systems with international Power Technology Institute (PTI) data input and dynamic
sizing. The flow chart of the computer program is shown in Fig. 3. The load powers are
given in per-unit (pu) with a 100 MVA base. The load at each bus will be considered as
a composite load of a CPL, CCL and CIL with a variable relative shares.

For example: at a certain bus, if the total power (PL) was equal to 2 p.u. and the
load model is: 50% constant power, 30% constant current, and 20% constant
impedance, then, the relative shares will be: CPL = 1 pu, CCL = 0.6 pu, and CIL = 0.4
pu., and hence: CCL = CPI * V, and CIL = CPZ * V2.

For the bus at which the load is gradually increased, the values for CPI and CPZ
are calculated considering the bus voltage to be nominal.
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Figure (3): Block diagram of the computer program.

Start

Read LFD,control data file
Read load percentages

Formulate bus admittance matrix

Update bus admittance matrix elements

Initialize bus voltage for HV Solution

Evaluate Jacobian Matrix

Calculate mismatch function

If mismatch < error

Calculate HV Solution

Initialize bus voltage for LV Solution

Update Variables & evaluate Jacobian Matrix

Calculate mismatch function

If mismatch < error

Calculate LV Solution

Calculate Energy Margin

If Energy Margin < E

END

Increase load and
Update system

parameters
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11-GENERATOR, 55-BUS SYSTEM
This system is a reduced version of BRUCE system of Ontario Hydro, Canada.

This system includes the state of Ontario (Canada) and upper New York area (USA)
[26]. This system consists of 11 generator buses and 44 load buses. It should be noted
that both resistance and conductance for all transmission lines are considered in this
application. The initial total generated power (i.e. before load increasing) for this system
is 2641.67 pu for P and 690.85 pu for Q (with a 100 MVA base).

For the application of the energy function to this system, Three load buses have
been elected to represent different load categories: a heavy load bus (bus #30), a
medium load bus (bus #7) and a light load bus (bus #149). At each of these selected
load buses, different percentages of load have been chosen to cover the whole range of
load modeling.
Heavy load bus (bus #30)

The active power at bus #30, which is one of the heavily loaded buses, is
432.69MW. Figure 4 shows the power and voltage behavior if the load modeling is
neglected. The Normalized EM (NEM) is the energy margin calculated after each load
increase divided by the energy margin for the initial load. Figures 5-7 show the power
and voltage behavior for some selected load models. Table 1 shows the main results
obtained for that bus for several load models and starting with the classical load model
(100% constant power).

Figure (4): Power and voltage behavior neglecting load modeling
(PP=100%,) for bus#30.
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Figure (5): Power and voltage behavior (PP=70%, PI=30%, PZ=0%) for bus#30.

Figure (6): Power and voltage behavior (PP=40%, PI=0%, PZ=60%) for bus#30.

Figure (7): Power and voltage behavior (PP=10%, PI=40%, PZ=50%) for bus#30.
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Table (1): Main results for bus#30 (starting active power = 497.84 MW).

Constant
power

load[%]

Constant
current
load[%]

Constant
impedance

load[%]

Active
power at
collapse

  [pu]

Maximum
power
  [pu]

High
Voltage

solution at
collapse[pu]

Low
Voltage

solution at
collapse[pu]

100 0 0 21.7269 21.7269 0.7445 0.6980
70 30 0 21.7754 21.8522 0.6876 0.6366
70 0 30 21.6556 21.8710 0.6634 0.6102
40 60 0 20.9928 21.8746 0.5998 0.5405
40 30 30 20.3367 21.8232 0.5596 0.5205
40 0 60 19.8936 21.7009 0.5393 0.4857
10 70 20 15.4983 21.7626 0.3687 0.3229
10 50 40 14.5016 21.6621 0.3394 0.3106
10 40 50 14.2881 21.6015 0.3336 0.2981
10 20 70 13.5971 21.4597 0.3148 0.2834

As shown, the increase in the constant impedance and constant current shares,
due to the dependency of these loads on voltage levels, cause a decrease in the total
active power especially at low voltage levels before reaching the collapse point. As
expected, the incremental increase in load power is followed by a gradual decrease in
the high voltage solution and a gradual increase in the low voltage solution. This
gradual change continues until reaching a certain power level at which the high voltage
solution coincides with the low voltage solution indicating zero energy margin at
voltage collapse. As shown, as the constant current and constant impedance load
percentages increase, a further decrease in the total power is observed before reaching
the collapse point. Also, the voltage magnitude at which voltage collapse occurs is much
lower for constant current and constant impedance loads than the voltage magnitudes
for constant power loads. This indicates that soft loads (constant current and constant
impedance loads) are more stable than stiff loads (constant power loads) as the system is
still operating even at very low voltage levels.(i.e.: Stiff loads are the source of voltage
instability while soft loads are not ).

Medium load bus (bus #7)
The active power at bus #7 is 228.02MW. Here, we have similar results for those

obtained for the heavy load bus (bus #30). Therefore, only the power and voltage
behavior for dominant constant impedance and current loads (PP=10%, PI=40 %,
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PZ=50%) are shown in Figure 8. The main results for some selected load models are
shown in Table 2.

Figure (8): Power and voltage behavior (PP=10%, PI=40%, PZ=50%) for bus#7.

Table (2): Main results for bus#7 (starting active power = 228.02 MW).

Constant
power

load[%]

Constant
current
load[%]

Constant
impedance

load[%]

Active
power at
collapse

  [pu]

Maximum
power
  [pu]

High
Voltage

solution at
collapse[pu]

Low
Voltage

solution at
collapse[pu]

100 0 0 17.5802 17.5802 0.6834 0.6544
70 30 0 17.7076 17.7201 0.6507 0.5704
70 0 30 17.7522 17.8195 0.6293 0.5548
40 60 0 17.2393 17.8438 0.5570 0.4908
40 30 30 16.9200 17.9395 0.5230 0.4835
40 0 60 16.8212 18.0318 0.5091 0.4594
10 70 20 13.3673 18.0252 0.3512 0.2940
10 50 40 12.2868 18.0857 0.3118 0.3058
10 40 50 12.4329 18.1151 0.3161 0.2858
10 20 70 11.8638 18.1738 0.2961 0.2802
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Light load bus (bus #149)
The active power at bus #149 is 17.18MW. Similarly, Figure 9 shows the power

and voltage behavior for dominant constant impedance and current loads (PP=10%, PI=40
%, PZ=50%). The main results for some selected load models are shown in Table 3.

Figure (9): Power and voltage behavior (PP=10%, PI=40%, PZ=50%) for bus#149.

Table (3): Main results for bus#149 (starting active power = 17.18 MW).

Constant
power

load[%]

Constant
current
load[%]

constant
impedance
load[%]

Active
power at
collapse

  [pu]

maximum
power
  [pu]

High
Voltage

solution at
collapse[pu]

Low Voltage
solution at

collapse[pu]

100 0 0 16.8719 16.8719 0.6776 0.6199
70 30 0 16.9148 16.9424 0.6230 0.5534
70 0 30 16.8529 16.9590 0.5985 0.5445
40 60 0 16.2257 16.9669 0.5209 0.4779
40 30 30 16.3042 16.9788 0.5248 0.4402
40 0 60 15.9684 16.9870 0.4956 0.4373
10 70 20 12.4408 16.9936 0.3263 0.2795
10 50 40 12.1582 16.9972 0.3154 0.2694
10 40 50 11.8798 16.9986 0.3030 0.2855
10 20 70 11.1461 17.0005 0.2799 0.2732
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As a conclusion, higher constant impedance and constant current load
percentages, and especially constant impedance, apparently decrease the system stability
until reaching first a critical power level (maximum power). This maximum power
occurs at a voltage level not much lower than the system nominal value. Any further
increase of load fails to raise the system power beyond that critical power level
(maximum power). On the contrary, the system total power starts to decrease due to the
dependency of such loads on the voltage levels, which continues dropping until reaching
the collapse point at a power level very much lower than the maximum power.

6. Conclusions:

The sparse network formulation of energy function technique retains the original
structure of the system network and avoids network reduction. This permits the system
loads to be modeled as they exist in practical life including constant power, constant
current and constant impedance loads. Neglecting these models may lead to misleading
results. A closed form expression of the energy function including load modeling effect
has been has been obtained. The significant effect of on power system voltage stability
has been investigated through an application to Ontario-Hydro (55-bus) real power
system (Canada). The load modeling effect on both power and voltage behavior and
consequently on the system voltage stability of three load buses that represent different
load categories has been emphasized.
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Nomenclatures:

α,V
ω

oo V,,0 α
V,,αω

f ( ,V)
g ( ,V)
Yij ∠βij

Gij+jBij

Vi ∠ α
Pi, Qi

Voltage magnitude and angle
Speed deviation
express the HVS
express the LVS
Constraint functions that represents the active power balance equation
Constraint functions that represents the reactive power balance equation
Admittance of transmission line connecting bus “i” and bus “j” in polar
form (i≠j) and Yii represents the self admittance of bus i,
Admittance of transmission line connecting bus “i” and bus “j” in
rectangular form (i≠j)
Voltage of bus i in polar form
Active and reactive load powers active and reactive load powers




