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Abstract:

In this paper, a novel multiobjective genetic algorithm approach for economic
emission load dispatch (EELD) optimization problem is presented. The EELD problem
is formulated as a nonlinear constrained multiobjective optimization problem with both
equality and inequality constraints. A new multiobjective genetic algorithm based
approach employs the concept of co-evolution and repair algorithm for handling
nonlinear constraints. The algorithm maintains a finite-sized archive of non-dominated
solutions which gets iteratively updated in the presence of new solutions based on the
concept of ε -dominance. The use of ε -dominance also makes the algorithms practical
by allowing a decision maker to control the resolution of the Pareto set approximation.

TOPSIS method is employed to extract the best compromise solution from a finite
set of alternatives based upon simultaneous minimization of distance from an ideal point
(IP) and maximization of distance from a nadir point (NP). Several optimization runs of
the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test
system. Simulation results with the proposed approach have been compared to those
reported in the literature. The comparison demonstrates the superiority of the proposed
approach and confirms its potential to solve the multiobjective EELD problem.
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1. Introduction.

With the increase in the environmental awareness and the passage of environmental
regulations, the environmental constraints are having a significant impact on the
operation of power systems. Traditional economic dispatch to minimize the fuel cost is
inadequate when environmental emissions are also to be included in the operation of
power plants.

The purpose of EELD problem is to figure out the optimal amount of the generated
power for the fossil-based generating units in the system by minimizing the fuel cost
and emission level simultaneously, subject to various equality and inequality constraints
including the security measures of the power transmission/distribution. Various
optimization techniques have been proposed by many researchers to deal with this
multiobjective programming problem with varying degree of success.

Different techniques have been reported in the literature pertaining to economic
emission load dispatch problem. In Refs. [4,11] the problem has been reduced to a
single objective problem by treating the emission as a constraint with a permissible
limit. This formulation, however, has a severe difficulty in getting the trade-off relations
between cost and emission. Alternatively, minimizing the emission has been handled as
another objective in addition to usual cost objective. A linear programming based
optimization procedures in which the objectives are considered one at a time was
presented in Ref. [9]. Unfortunately, the EELD problem is a highly nonlinear and a
multimodal optimization problem. Therefore, conventional optimization methods that
make use of derivatives and gradients, in general, not able to locate or identify the
global optimum. On the other hand, many mathematical assumptions such as analytic
and differential objective functions have to be given to simplify the problem.
Furthermore, this approach does not give any information regarding the trade-offs
involved.

In other research direction, the multiobjective EELD problem was converted to a
single objective problem by linear combination of different objectives as a weighted
sum [5,8,22,23]. The important aspect of this weighted sum method is that a set of
Pareto-optimal solutions can be obtained by varying the weights. Unfortunately, this
requires multiple runs as many times as the number of desired Pareto-optimal solutions.
Furthermore, this method cannot be used to find Pareto-optimal solutions in problems
having a nonconvex Pareto-optimal front. In addition, there is no rational basis of
determining adequate weights and the objective function so formed may lose
significance due to combining noncommensurable objectives. To avoid this difficulty,
the ε -constraint method for multiobjective optimization was presented in Refs. [13,21].
This method is based on optimization of the most preferred objective and considering
the other objectives as constraints bounded by some allowable levels. These levels are
then altered to generate the entire Pareto-optimal set. The most obvious weaknesses of
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this approach are that it is time-consuming and tends to find weakly nondominated
solutions.

Goal programming method was also proposed for multiobjective EELD problem
[15]. In this method, a target or a goal to be achieved for each objective is assigned and
the objective function will then try to minimize the distance from the targets to the
objectives. Although the method is computationally efficient, it will yield an inferior
solution rather than a noninferior one if the goal point is chosen in the feasible domain.
Hence, the main drawback of this method is that it requires a priori knowledge about the
shape of the problem search space.

Heuristic algorithms such as genetic algorithm have been recently proposed for
solving OPF problem [20]. The results reported were promising and encouraging for
further research. Moreover the studies on heuristic algorithms over the past few years,
have shown that these methods can be efficiently used to eliminate most of difficulties
of classical methods
[1-3,7,10]. Since they are population–based techniques, multiple Pareto-optimal
solutions can, in principle, be found in one single run.

In this paper a new multiobjective GA based approach is proposed, which based on
concept of co-evolution and repair algorithm for handing constraints. Also, it is based
on the ε -dominance concept which maintains a finite-sized archive of non-dominated
solutions which gets iteratively updated according to the chosen ε -vector. TOPSIS
method is introduced to identify best compromise solution from a finite set of
alternatives based upon simultaneous minimization of distance from an ideal point (IP)
and maximization of distance from a nadir point (NP).

2. Multiobjective Optimization

Multiobjective optimization differs from the single objective case in several ways:

• The usual meaning of the optimum makes no sense in the multiple objective case
because the solution optimizing all objectives simultaneously is, in general,
impractical; instead, a search is launched for a feasible solution yielding the best
compromise among objectives on a set of, so called, efficient solutions;

• The identification of a best compromise solution requires taking into account the
preferences expressed by the decision-maker;

• The multiple objectives encountered in real-life problems are often mathematical
functions of contrasting forms.

• A key element of a goal programming model is the achievement function; that is, the
function that measures the degree of minimization of the unwanted deviation
variables of the goals considered in the model. A general multiobjective optimization
problem is expressed by:
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Where 1 2( ( ), ( ),..., ( ))mf x f x f x are the m objectives functions, 1 2 n( , ,..., )x x x  are the n
optimization parameters, and nS R∈   is the solution or parameter space.

Definition 1.( Pareto optimal solution ): *x  is said to be a Pareto optimal solution of
MOP if there exists no other feasible x  (i.e., x S∈ ) such that, *( ) ( )j jf x f x≤ for all

1,2,...,j m=  and *( ) ( )j jf x f x< for at least one objective function jf .

Definition 2 [16]. ( -dominance) Let : mf x R→  and ,a b X∈ . Then a  is said to -
dominate b  for some  > 0, denoted as a bεf , if and only if for {1,..., }i m∈

(1 ) ( ) ( )i if a f bε+ ≥

Fig. 1: Graphs visualizing the concepts of dominance (left) and -dominance
(right).

Definition 3 [16]. ( -approximate Pareto set) Let X  be a set of decision alternatives
and 0ε > . Then a set x ε is called an -approximate Pareto set of X , if any vector a x∈  is
-dominated by at least one vectorb x ε∈ , i.e.,

:   ba x b x such that aε ε∀ ∈ ∃ ∈ f

According to definition 2, the  value stands for a relative “tolerance” allowed for the
objective values which declared in figure1. This is especially important in higher
dimensional objective spaces, where the concept of -dominance can reduce the
required number of solutions considerably. Also, the use of ε -dominance also makes
the algorithms practical by allowing a decision maker to control the resolution of the
Pareto set approximation by choosing an appropriate ε  value.

3. Economic Emission Load Dispatch (EELD)
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The economic emission load dispatch involves the simultaneous optimization of fuel
cost and emission objectives which are conflicting ones. The deterministic problem is
formulated as described below.

3.1 Objective Functions

Fuel Cost Objective. The classical economic dispatch problem of finding the optimal
combination of power generation, which minimizes the total fuel cost while satisfying
the total required demand can be mathematically stated as follows [21]:

2

1 1
( ) ( ) ( )$ /

n n

t i Gi i i Gi i Gi
i i

f C C P a b P c P hr
= =

⋅ = = = + +∑ ∑
Where

i

i i i

C: total fuel cost ($/hr),  C : is fuel cost of generator i
a ,b ,c : fuel cost coefficients of generator i,

GiP : power generated (p.u)by generator i,
n: number of generator.

Emission Objective. The emission function can be presented as the sum of all types of
emission considered, such as xNO , 2SO , thermal emission, etc., with suitable pricing or
weighting on each pollutant emitted. In the present study, only one type of emission

xNO  is taken into account without loss of generality. The amount of xNO emission is
given as a function of generator output, that is, the sum of a quadratic and exponential
function:
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Where, , , , ,i i i i iα β γ ξ λ : coefficients of the ith generator's xNO emission characteristic.

3.2 Constraints

The optimization problem is bounded by the following constraints:
• Power balance constraint. The total power generated must supply the total load

demand and the transmission losses.

1
0

n

Gi D Loss
i

P P P
=

− − =∑
Where DP : total load demand (p.u.), and lossP : transmission losses (p.u.).
The transmission losses are given by[12]:
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Where ij ij,   Q ,    A cos( ),  B sin( )ij ij
i Gi Di i Gi Di i j i j

i j i j

R R
P P P Q Q

V V V V
δ δ δ δ= − = − = − = −

n : number of buses iδ  : voltage angle at bus i
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ijR : series resistance connecting buses i
and j

iV  : voltage magnitude at bus i

iP  : real power injection at bus i
iQ  : reactive power injection at

bus i

• Maximum And Minimum Limits Of Power Generation. The power generated GiP
by each generator is constrained between its minimum and maximum limits, i.e.,

min max min max min max,      ,    ,             1,......,Gi Gi Gi Gi Gi Gi i i iP P P Q Q Q V V V i n≤ ≤ ≤ ≤ ≤ ≤ =

where minGiP : minimum power generated, and maxGiP : maximum power generated.

• Security Constraints. A mathematical formulation of the security constrained
EELD problem would require a very large number of constraints to be considered.
However, for typical systems the large proportion of lines has a rather small
possibility of becoming overloaded. The EELD problem should consider only the
small proportion of lines in violation, or near violation of their respective security
limits which are identified as the critical lines. We consider only the critical lines that
are binding in the optimal solution. The detection of the critical lines is assumed
done by the experiences of the DM. An improvement in the security can be obtained
by minimizing the following objective function.

max

1

( ) (| ( ) | / )
k

Gi j G j
j

S f P T P T
=

= = ∑
Where, ( )j GT P  is the real power flow max

jT is the maximum limit of the real power
flow of the j th line and k is the number of monitored lines. The line flow of the j th line
is expressed in terms of the control variables GsP , by utilizing the generalized generation
distribution factors (GGDF) [18] and is given below.

1
( ) ( )

n

J G ji Gi
i

T P D P
=

= ∑
where, jiD is the generalized GGDF for line j, due to generator i

 For secure operation, the transmission line loading lS is restricted by its upper limit
as

max , 1,....,S S n≤ =l l ll

Where nl is the number of transmission line.
4. Multiobjective Formulation of EELD Problem.

The multiobjective EELD optimization problem is therefore formulated as:
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5. The proposed Algorithm
Recently, the studies on evolutionary algorithms have shown that these algorithms

can be efficiently used to eliminate most of the difficulties of classical methods which
can be summarized as :

• An algorithm has to be applied many times to find multiple Pareto-optimal
solutions.

• Most algorithms demand some knowledge about the problem being solved.
• Some algorithms are sensitive to the shape of the Pareto-optimal front.
• The spread of Pareto-optimal solutions depends on efficiency of the single

objective optimizer.
It is worth mentioning that the goal of a multiobjective optimization problem is not

only guide the search towards Pareto-optimal front but also maintain population
diversity.

5.1. Initialization Stage

The algorithm uses two separate population, the first population ( )tP consists of the
individuals which initialized randomly satisfying the search space (The lower and upper
bounds), while the second population ( )tR consists of reference points which satisfying
all constraints. However, in order to ensure convergence to the true Pareto-optimal
solutions, we concentrated on how elitism could be introduced in the algorithm. So, we
propose an archiving/selection [16] strategy that guarantees at the same time progress
towards the Pareto-optimal set and a covering of the whole range of the non-dominated
solutions. The algorithm maintains an externally finite-sized archive ( )tA  of non-
dominated solutions which gets iteratively updated in the presence of new solutions
based on the concept of ε -dominance.

5.2. Repair Algorithm
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The idea of this technique [20] is to separate any feasible individuals in a population
from those that are infeasible by repairing infeasible individuals. This approach co-
evolves the population of infeasible individuals until they become feasible. Repair
process works as follows. Assume, there is a search point Sω ∉ (where S is the feasible
space). In such a case the algorithm selects one of the reference points (Better reference
point has better chances to be selected), say r S∈ and creates random points Z  from the
segment defined between ,rω , but the segment may be extended equally on both sides
determined by a user specified parameter [0,1]µ ∈ . Thus, a new feasible individual is
expressed as: 1 2. (1 ) . ,    (1 ) . .γ ω γ γ ω γ= + − = − +z r z r

 Where (1 2 )γ µ δ µ= + −  and [0,1]δ ∈ is a random generated number
5.3. Basic Algorithm

It uses two separate population, the first population ( 0)=tP (where t is the iteration
counter) consists of the individuals which initialized randomly satisfying the search
space, while the second population ( )tR consists of reference points which satisfying all
constraints. Also, it stores initially the Pareto-optimal solutions externally in a finite
sized archive of non-dominated solutions (0)A . We use cluster algorithm[7] to create the
next population ( 1)+tP , if ( ) ( )| | | |>t tP A (i.e., the size of the population ( )tP  greater than the
size of archive ( )tA ) then new population ( 1)+tP consists of all individual from ( )tA and the
population ( )tP are considered for the clustering procedure to complete ( 1)+tP , if

( ) ( )| | | |<t tP A  then | |P  solutions are picked up at random from ( )tA and directly copied to
the new population ( 1)tP + .

Since our goal is to find new nondominated solutions, one simple way to combine
multiple objective functions into a scalar fitness function is the following weighted sum
approach[17]:

1 1
1

( ) ( ) ... ( ) ... ( ) ( )
m

i i m m j j
j

f x w f x w f x w f x w f x
=

= + + + + = ∑
Where x is a string (i.e., individual), ( )f x  is a combined fitness function, ( )if x  is the

ith objective function. When a pair of strings is selected for a crossover operation, we
assign a random number to each weight as follows.

1

(.) ,    1,2,..,
(.)

i
i m

j
j

randomw i m
random

=

= =

∑
 Calculate the fitness value of each string using the random weights iw . Select a pair

of strings from the current population according to he following selection probability
( )xβ of a string x in the population ( )tP
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This step is repeated for selecting | | / 2P  Paris of strings from the current

populations. For each selected pair apply crossover operation to generate two new
strings, for each strings generated by crossover operation, apply a mutation operator
with a prespecified mutation probability. The system also includes the survival of some
of the good individuals without crossover or selection. This method seems to be better
than the others if applied constantly.

Algorithm in Table 2, shows the proposed algorithm. The purpose of the function
generate is to generate a new population in each iteration t, possibly using the contents
of the old population ( 1)tP − and the old archive set ( 1)−tA  in associated with variation
(recombination and mutation). The function update gets the new population ( )tP  and the
old archive set ( 1)−tA and determines the updated one, namely ( )tA as indicated in table 1

The algorithm maintains a finite-sized archive of non-dominated solutions which
gets iteratively updated in the presence of a new solutions based on the concept of ε -
dominance, such that new solutions are only accepted in the archive if they are not ε -
dominated by any other element in the current archive (table 1), The use of ε -
dominance also makes the algorithms practical by allowing a decision maker to control
the resolution of the Pareto set approximation by choosing an appropriate ε  value.

Table 1: Algorithm of select
operator

Table 2: Algorithm of the proposed
algorithm

1.  A,x
2. D {x A:box(x) box(x ))
3. if D
4.  { } \
5.  : ( ( ) ( ) )
6. { } \{ }
7. : ( ( ) ( ))
8. { }
9.
10.
11.
12.

INPUT

then
A A x D
else if x box x box x x x then
A A x x
else if x box x box x then
A A x
else
A A
endif
OUTPUT

φ

′ ′∈
≠

′
′ ′ ′∃ = ∧

′ ′
′ ′∃/

′

′

′

 f

 U

f

 U

f

 U

A

(0) (0)

(0) (0)

(t)

( ) ( 1) ( 1)

( ) ( 1) ( )

1.  t 0
2. Create P ,
3. nondominated( )
3.  terminate (A , ) do
4.  1
5. P generate( , ) {generate new search point}
6. update( , )     {update archiv

t t t

t t t

R
A P
while t false
t t

A P
A A P

− −

−

=

=

+

( )

e (table 1)}
7.
8. Output : t

end while
A

6. TOPSIS Method

Optimization of the above-formulated objective functions using multiobjective
genetic algorithms yields not a single optimal solution, but a set of Pareto optimal
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solutions, in which one objective cannot be improved without sacrificing other
objectives. For practical applications, however, we need to select one solution, which
will satisfy the different goals to some extent. Such a solution is called best compromise
solution. TOPSIS method given by Yoon and Hwang [14, 19] has the ability to identify
the best alternative from a finite set of alternatives quickly. It stands for "Technique for
Order Preference by Similarity to the Ideal Solution"(Fig. 2), which based upon the
concept that the chosen alternative should have the shortest distance from the positive
ideal solution and the farthest from the negative ideal solution. TOPSIS can incorporate
relative weights of criterion importance. The idea of TOPSIS can be expressed in a
series of steps.

(1) Obtain performance data for n alternatives over M criteria ijx .
(2) Calculate normalized rating (vector normalization is used) ijr .
(3) Develop a set of importance weights mW , for each of the criteria. The basis for

these weights can be anything, but, usually, is ad hoc reflective of relative
importance.

.ij j ijV w r=

(4) Identify the ideal alternative (extreme performance on each criterion) S + .
( ) ( ){ }1 2 ij 1 ij 2{ , ,.., ,.., } max v | , min v | , 1,....,j nS v v v v j J j J i m+ + + + += = ∈ ∈ =

(5) Identify the nadir alternative (reverse extreme performance on each criterion) S − .
( ) ( ){ }1 2 ij 1 ij 2{ , ,.., ,.. } min v | , max v | , 1,....,j nS v v v v j J j J i m− − − − −= = ∈ ∈ =

       Where !J  is a set of benefit attributes and 2J  is a set of cost attributes.
(6) Develop a distance measure over each criterion to both ideal ( D + ) and nadir

( D − ).
_2 2( ) ,                           ( )i ij j i ij j

j j
D v v D v v+ + −= − = −∑ ∑

(7) For each alternative, determine a ratio R equal to the distance to the nadir divided
by the sum of the distance to the nadir and the distance to the ideal,

DR
D D

−

− +=
+

 (8) Rank order alternatives by maximizing the ratio in Step 6.
• Rank alternative according to R ratio in descending order.
• Recommend the alternative with the maximum ratio.

A relative advantage of TOPSIS is the ability to identify the best alternative from a
finite set of alternatives quickly [19]. TOPSIS is attractive in that limited subjective
input is needed from decision makers. The only subjective input needed is weights
which reflect the degree of satisfactory of each objective.
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Fig. 2: Ideal and Nadir concept
7. Implementation of The Proposed Approach

The described methodology is applied to the standard IEEE 30-bus 6-generator test
system to investigate the effectiveness of the proposed approach. The values of fuel cost
and emission coefficients are given in Table 3. For comparison purposes with the
reported results, the system is considered as losses and the security constraint is
released. The techniques used in this study were developed and implemented on 1.7-
MHz PC using MATLAB environment. Table 4 lists the parameter setting used in the
algorithm for all runs.

Table 3: Generator cost and emission coefficients
 G1 G2 G3 G4 G5 G6

Cost a 10 10 20 10 20 10
b 200 150 180 100 180 150
c 100 120 40 60 40 100

Emission α 4.091 2.543 4.258 5.426 4.258 6.131
β -

5.554
-
6.047

-
5.094

-
3.550

-
5.094

-
5.555

γ 6.490 4.638 4.586 3.380 4.586 5.151
ζ 2.0E-

4
5.0E-
4

1.0E-
6

2.0E-
3

1.0E-
6

1.0E-
5

λ 2.857 3.333 8.000 2.000 8.000 6.667

                              Table 4: GA parameters
Population size (N) 50
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No. of Generation 200
Crossover
probability

0.95

Mutation
probability

0.01

Selection operator Roulette Wheel
Crossover operator BLX-
Mutation operator Polynomial

mutation
Relative tolerance
ε

10e-6

8. Results And Discussions

Fig. 3 shows well-distributed Pareto optimal nondominated solutions obtained by the
proposed algorithm after 200 generations.

Fig. 3: Pareto-optimal front of the proposed approach.

Table 5 and 6 show the best fuel cost and best xNO emission obtained by proposed
algorithm as compared to Nondominated Sorting Genetic Algorithm (NSGA) [1],
Niched Pareto Genetic Algorithm (NPGA) [2] and Strength Pareto Evolutionary
Algorithm (SPEA) [3]. It can be deduced that the proposed algorithm finds comparable
minimum fuel cost and comparable minimum xNO emission to the three evolutionary
algorithms.

Table 5: Best fuel cost
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NSGA NPGA SPEA Proposed
1GP 0.1168 0..1245 0.1086 0.1739
2GP 0.3165 0.2792 0.3056 0.3578
3GP 0.5441 0.6284 0.5818 0.5311
4GP 0.9447 1.0264 0.9846 0.9790
5GP 0.5498 0.4693 0.5288 0.4429
6GP 0.3964 0.39993 0.3584 0.3725

Best cost 608.245 608.147 607.807 606.4533
Corresponding

Emission
0.21664 0.22364 0.22015 0.2028

Table 6: Best xNO Emission
NSGA NPGA SPEA Proposed

1GP 0.4113 0.3923 0.4043 0.3885
2GP 0.4591 0.4700 0.4525 0.4984
3GP 0.5117 0.5565 0.5525 0.5167
4GP 0.3724 0.3695 0.4079 0.4502
5GP 0.5810 0.5599 0.5468 0.5205
6GP 0.5304 0.5163 0.5005 0.5005

Best Emission. 0.19432 0.19424 0.19422 0.1882
Corresponding

Cost
647.251 645.984 642.603 642.8976

Convergence of fuel cost and emission objective functions are shown in fig 4. Also, fig
5 shows the convergence of best compromise solutions through the algorithm
proceeding.

Fig. 4: Convergence of cost and emission objectives
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Fig. 5: Convergence of best compromise solution

Identifying A Satisfactory Solution

Here, we need to select one solution, which will satisfy the different goals to some
extent. Such a solution is called best compromise solution. TOPSIS method is used to
identify solutions from a finite set of alternatives, the identification of a best
compromise solution requires taking into account the preferences expressed by the
decision-maker DM, which reflect the degree of satisfactory of each objective. We
incorporate relative weights of criterion importance as 1 2{ 0.2, w 0.8}w = = , which give
relative importance for fuel cost as 0.2 and relative importance for xNO  emission
objective as 0.8, the bigger the weighting factor, the more important is the attainment of
that objective.

In order to obtain the normalized rating as in table 8, initially, fuel cost 1( )f ⋅ , and
emission 2 ( )f ⋅  are optimized individually to obtain minimum values of the objectives.
Table 7 gives the minimum and maximum values of the objectives.

Table 8 (column 6-7) shows the weighted normalized rating according to the
corresponding relative criterion importance 1 2{ 0.2, w 0.8}w = = . Then we calculate the
separation measures as in column 8-9. For each alternative, determine a ratio R (step 7).
Alternatives have been ranked by maximizing the ratio R. It is obvious that all set of
solutions are ranked corresponding to the relative weights of criterion importance
(degree of satisfactory) as depicted in last column in table 8.

Table 7: The minimum and maximum values of the objectives
Max Min

Fuel cost($) 642.8976 606.4533
Emission(ton) 0.2028 0.1882

Te declare the performance of changing the weights 1 2 1 2{ , | 1}w w w w+ =  on the best
compromise solution, we plot weight 1w  versus best compromise solution of 1( )f ⋅ (Cost
($/h) as in figure 6. Also, we plot weight 2w  versus best compromise solution of

2 ( )f ⋅ (Emission (ton/h) in figure 7. It is obvious that for each weight (criterion
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importance), different best compromise solutions had found proportional to the criterion
importance (weighting factor).

Fig. 6: weight 1w versus best
compromise cost

Fig. 7: weight 2w versus best
compromise Emission

Table 8 : Results of multiobjective EELD with 1 2{ 0.2, 0.8 }w w= =

Set of solution Normalized
(vector)
Decision
matrix

Weighted
normalized

Rating

Separation measures
S.
N
O

Cost Emis
sion

Cost emissi
on

1 0.2w = 2 0.8w = S + S − R

Ra
nk

1 606.4
533

0.202
8

16.64
06

13.89
04

3.328
1

11.11
23

0.80
00

0.200
0

0.200
0

48

2 606.8
553

0.201
3

16.65
16

13.78
77

3.330
3

11.03
01

0.71
78

0.214
2

0.229
8

47

3 607.2
585

0.200
3

16.66
26

13.71
92

3.332
5

10.97
53

0.66
30

0.238
8

0.264
8

46

4 607.6
599

0.199
5

16.67
37

13.66
44

3.334
7

10.93
15

0.61
92

0.264
7

0.299
5

45

5 608.0
664

0.198
8

16.68
48

13.61
64

3.337
0

10.89
32

0.58
09

0.290
8

0.333
6

44

6 608.4
713

0.198
2

16.69
59

13.57
53

3.339
2

10.86
03

0.54
81

0.315
0

0.365
0

43

7 608.8
735

0.197
6

16.70
70

13.53
42

3.341
4

10.82
74

0.51
52

0.340
7

0.398
0

42

8 609.2
819

0.197
1

16.71
82

13.50
00

3.343
6

10.80
00

0.48
79

0.362
7

0.426
4

41

9 609.6 0.196 16.72 13.46 3.345 10.77 0.46 0.385 0.455 40
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966 6 95 58 9 26 06 5 6
10 610.1

036
0.196

2
16.74

07
13.43

84
3.348

1
10.75

07
0.43
88

0.403
9

0.479
3

39

11 610.5
193

0.195
8

16.75
21

13.41
10

3.350
4

10.72
88

0.41
70

0.422
7

0.503
4

38

12 610.9
513

0.195
4

16.76
40

13.38
36

3.352
8

10.70
68

0.39
53

0.441
8

0.527
8

37

13 611.3
557

0.195
1

16.77
51

13.36
30

3.355
0

10.69
04

0.37
90

0.456
0

0.546
1

36

14 611.7
725

0.194
7

16.78
65

13.33
56

3.357
3

10.66
85

0.35
74

0.475
6

0.571
0

35

15 612.1
814

0.194
4

16.79
77

13.31
51

3.359
5

10.65
21

0.34
12

0.490
2

0.589
6

34

16 612.5
842

0.194
1

16.80
88

13.29
45

3.361
8

10.63
56

0.32
50

0.504
9

0.608
4

33

17 612.9
899

0.193
9

16.81
99

13.28
08

3.364
0

10.62
47

0.31
44

0.514
5

0.620
7

32

18 613.4
035

0.193
6

16.83
13

13.26
03

3.366
3

10.60
82

0.29
83

0.529
5

0.639
6

31

19 613.8
283

0.193
4

16.84
29

13.24
66

3.368
6

10.59
73

0.28
78

0.539
2

0.652
0

30

20 614.2
378

0.193
1

16.85
42

13.22
60

3.370
8

10.58
08

0.27
19

0.554
3

0.670
9

29

21 614.7
194

0.192
8

16.86
74

13.20
55

3.373
5

10.56
44

0.25
61

0.569
3

0.689
7

28

22 615.0
130

0.192
7

16.87
54

13.19
86

3.375
1

10.55
89

0.25
10

0.574
2

0.695
8

27

23 616.0
340

0.192
2

16.90
34

13.16
44

3.380
7

10.53
15

0.22
54

0.599
2

0.726
7

26

24 617.0
405

0.191
8

16.93
11

13.13
70

3.386
2

10.50
96

0.20
56

0.619
2

0.750
7

25

25 618.0
654

0.191
4

16.95
92

13.10
96

3.391
8

10.48
77

0.18
66

0.639
3

0.774
1

24

26 619.0
940

0.191
0

16.98
74

13.08
22

3.397
5

10.46
58

0.16
84

0.659
6

0.796
6

23

27 620.0
903

0.190
7

17.01
47

13.06
16

3.402
9

10.44
93

0.15
61

0.674
7

0.812
1

19

28 621.0
852

0.190
4

17.04
20

13.04
11

3.408
4

10.43
29

0.14
48

0.689
9

0.826
5

15

29 622.0
795

0.190
2

17.06
93

13.02
74

3.413
9

10.42
19

0.13
92

0.699
8

0.834
1

13

30 623.1
284

0.189
9

17.09
81

13.00
68

3.419
6

10.40
55

0.13
06

0.715
1

0.845
6

9

31 624.1
590

0.189
7

17.12
64

12.99
32

3.425
3

10.39
45

0.12
73

0.725
1

0.850
7

7

32 625.1
901

0.189
5

17.15
47

12.97
95

3.430
9

10.38
36

0.12
51

0.735
2

0.854
6

4
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33 626.2
352

0.189
3

17.18
34

12.96
58

3.436
7

10.37
26

0.12
42

0.745
4

0.857
2

2

34 627.2
854

0.189
1

17.21
22

12.95
21

3.442
4

10.36
16

0.12
45

0.755
6

0.858
5

1

35 628.3
075

0.189
0

17.24
02

12.94
52

3.448
0

10.35
62

0.12
77

0.760
4

0.856
2

3

36 629.3
678

0.188
9

17.26
93

12.93
84

3.453
9

10.35
07

0.13
15

0.765
3

0.853
4

5

37 630.5
286

0.188
7

17.30
12

12.92
47

3.460
2

10.33
97

0.13
49

0.775
6

0.851
8

6

38 631.5
387

0.188
6

17.32
89

12.91
78

3.465
8

10.33
42

0.13
94

0.780
6

0.848
5

8

39 632.5
965

0.188
6

17.35
79

12.91
78

3.471
6

10.33
42

0.14
51

0.780
1

0.843
1

10

40 633.6
883

0.188
5

17.38
79

12.91
10

3.477
6

10.32
88

0.15
04

0.785
2

0.839
3

11

41 634.8
174

0.188
4

17.41
88

12.90
41

3.483
8

10.32
33

0.15
60

0.790
3

0.835
1

12

42 635.9
329

0.188
4

17.44
94

12.90
41

3.489
9

10.32
33

0.16
21

0.790
0

0.829
7

14

43 636.9
824

0.188
3

17.47
82

12.89
73

3.495
6

10.31
78

0.16
76

0.795
2

0.825
9

16

44 637.9
946

0.188
3

17.50
60

12.89
73

3.501
2

10.31
78

0.17
32

0.795
0

0.821
1

17

45 639.0
070

0.188
3

17.53
38

12.89
73

3.506
8

10.31
78

0.17
87

0.794
8

0.816
4

18

46 640.3
625

0.188
2

17.57
10

12.89
04

3.514
2

10.31
23

0.18
61

0.800
1

0.811
3

20

47 641.3
649

0.188
2

17.59
85

12.89
04

3.519
7

10.31
23

0.19
16

0.800
0

0.806
8

21

48 642.8
976

0.188
2

17.64
06

12.89
04

3.528
1

10.31
23

0.20
00

0.800
0

0.800
0

22

9. Conclusion

The approach presented in this paper was applied to economic emission load
dispatch optimization problem formulated as multiobjective optimization problem with
competing fuel cost, and emission. The algorithm maintains a finite-sized archive of
non-dominated solutions which gets iteratively updated in the presence of new solutions
based on the concept of ε -dominance. Moreover, TOPSIS method is employed to
extract the best compromise solution from the trade-off curve. This method identify
solutions from a finite set of alternatives based upon simultaneous minimization of
distance from an ideal point (IP) and maximization of distance from a nadir point(NP).
The following are the significant contributions of this paper:
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(a) The proposed technique has been effectively applied to solve the EELD considering
two objectives simultaneously, with no limitation in handing more than two
objectives.

(b) The non-dominated solutions in the obtained Pareto-optimal set are well distributed
and have satisfactory diversity characteristics.

(c) Allowing a decision maker to control the resolution of the Pareto set approximation
by choosing an appropriate ε  value

(d) The proposed approach is efficient for solving nonconvex multiobjective
optimization problems where multiple Pareto-optimal solutions can be found in one
simulation run.

(e) TOPSIS method is employed to extract the best compromise solution from the trade-
off curve according to the predetermined weight factor, the bigger the weight factor,
the more important is the attainment of that objective.

(f) This work may be very valuable for on-line operation of power systems when
environmental constraints are also need to be considered. In addition to on-line
operation, this work can be a part of an off-line planning tool when there are hard
limits on how much emission is acceptable by a utility over a period of a month or a
year.
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